
SOFTWARE ENGINEERING LABORATORY SERIES

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SEL-94-005

AN OVERVIEW OF THE SOFTWARE
ENGINEERING LABORATORY

DECEMBER 1994

iii SEL-94-005

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and created to investigate the effectiveness of software
engineering technologies when applied to the development of applications software. The SEL was created in 1976
and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to
measure the effect of various methodologies, tools, and models on the process; and (3) to identify and then to apply
successful development practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes this document.

The major contributors to this document are

Frank McGarry and Rose Pajerski, NASA/Goddard Space Flight Center

Gerald Page and Sharon Waligora, Computer Sciences Corporation

Victor Basili and Marvin Zelkowitz, University of Maryland

The SEL is accessible on the World Wide Web at

http://groucho.gsfc.nasa.gov/Code_550/SEL_hp.html

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

v SEL-94-005

Abstract

This report describes the background and structure of the SEL organization, the SEL process improvement approach,
and its experimentation and data collection process. Results of some sample SEL studies are included. It includes
a discussion of the overall implication of trends observed over 17 years of process improvement efforts and looks at
the return on investment based on a comparison of the total investment in process improvement with the measurable
improvements seen in the organization’s software product.

iii SEL-94-005

Contents

Foreword.. iii

Abstract v

Introduction ... 1

Section 1. Background.. 3

1.1 SEL History.. 3

1.2 SEL Process Improvement Strategy.. 3

Section 2. The SEL Organization.. 7

2.1 Software Development/Maintenance... 8

2.2 Process/Product Analysis.. 8

2.3 Data Base Support.. 9

Section 3. The SEL Process Improvement Concept... 11

3.1 Bottom-Up Improvement.. 11

3.2 Measurement.. 12

3.3 Reuse of Experience... 12

Section 4. SEL Experimentation and Analysis .. 13

4.1 Defining Experiments .. 13

4.2 Collecting Measures... 14

4.3 Analyzing Data .. 14

4.4 Improving Process.. 18

Section 5. SEL Experiences: Understanding, Assessing, and Packaging... 21

5.1 Understanding.. 21

5.2 Assessing... 26
5.2.1 Studies of Design Approaches... 26
5.2.2 Studies of Testing... 27
5.2.3 Studies with Cleanroom.. 29
5.2.4 Studies with Ada and OOD... 30
5.2.5 Studies with Independent Verification and Validation (IV&V) ... 33
5.2.6 Additional Studies .. 36

5.3 Packaging .. 36
5.3.1 Interim Packages .. 36
5.3.2 Technology Reports.. 36
5.3.3 Standards, Tools, and Training... 37

Section 6. The SEL Impact ... 39

6.1 Cost of Change... 39

6.2 Impact on Product.. 39

6.3 Impact on Process... 43

Appendix A - Sample SEL Experiment Plan.. 45

iiii SEL-94-005

References... 47

Standard Bibliography of SEL Literature... 49

ix SEL-94-005

Illustrations

Figures

1 The SEL Process Improvement Paradigm... 4

2 SEL Structure... 7

3 Effort Data Collection Form... 15

4 Defect/Change Data Collection Form... 16

5 SEL Core Measures.. 17

6 Effort Distribution by Phase and Activity.. 22

7 SEL Error Characteristics... 23

8 Error Detection Rate Model.. 24

9 Fault Rate for Classes of Module Strength.. 27

10 Fault Detection Rate by Testing Method... 28

11 Cost of Fault Detection by Testing Method... 29

12 Results of Cleanroom Experiment.. 30

13 Assessing Cleanroom Against Goals and Expectations ... 31

14 SEL Ada/OOT Projects.. 32

15 Maturing Use of Ada.. 33

16 Reuse Shortened Project Duration.. 34

17 A Look at IV&V Methodology... 35

18 Impact on SEL Products (Reliability).. 42

19 Impact on SEL Products (Cost)... 42

20 Impact on SEL Products (Reuse).. 43

21 Development Error Rates (1977-1994)... 44

Tables
1 Focus of SEL Organizational Components... 8

2 SEL Baseline (1985-1990).. 21

3 Initial SEL Models/Relations.. 25

4 More Recent SEL Software Characteristics (late 1980s)... 25

5 Early SEL Baseline (1985-1989).. 40

6 Current SEL Baseline (1990-1993)... 41

ix SEL-94-005

1 SEL-94-005

Introduction

Since its inception, the Software Engineering Laboratory (SEL) has conducted experiments on approximately 120
Flight Dynamics Division (FDD) production software projects at NASA/Goddard Space Flight Center (GSFC), in
which numerous software process changes have been applied, measured, and analyzed. As a result of these studies,
appropriate processes have been adopted and tailored within the environment, which has guided the SEL to
significantly improve the software generated. Through experimentation and sustained study of software process and
its resultant product, the SEL has been able to identify refinements to its software process and to improve product
characteristics based on FDD goals and experience. This effort has been driven throughout by the goals of achieving
significant overall improvement in three product measures:

• Reduction in defect rate of delivered software

• Reduction in cost of software to support similar missions

• Reduction in average cycle time to produce mission support software

The continual experimentation with software process has yielded an extensive set of empirical studies that has
guided the evolution of standards, management practices, technologies, and training within the organization.
Additionally, the SEL has produced over 200 reports that describe experiences from the experimentation process and
its overall software process improvement approach.

3 SEL-94-005

Section 1. Background

1.1 SEL History

The SEL was created in 1976 at NASA/GSFC for the
purpose of understanding and improving the overall
software process and products that were being created
within the FDD. A partnership was formed between
NASA/GSFC, the University of Maryland, and
Computer Sciences Corporation (CSC) with each of
the organizations playing a key role: NASA/GSFC
as the user and manager of all of the relevant software
systems; the University of Maryland as the focus of
advanced concepts in software process and
experimentation; and CSC as the major contractor
responsible for building and maintaining the software
used to support the NASA missions. The original
plan of the SEL was to apply evolving software
technologies in the production environment during
development and to measure the impact of these
technologies on the products being created. In this
way, the most beneficial approaches could be
identified through empirical studies and then captured
once improvements were identified. The plan was to
measure in detail both the process as well as the end
product.

At the time the SEL was established, significant
advances were being made in software development
(e.g., structured analysis techniques, automated tools,
disciplined management approaches, quality
assurance approaches). However, very little empirical
evidence or guidance existed for selecting and
applying promising techniques and processes. In
fact, little evidence was available regarding which
approaches were of any value in software production.
Additionally, there was very limited evidence
available to qualify or quantify the existing software
process and associated products, or to aid in
understanding the impact of specific methods. Thus,
the SEL staff developed a means by which the
software process could be understood, measured,
qualified, and measurably improved. Their efforts
focused on the primary goal of building a clear
understanding of the local software business. This
involved building models, relations, and empirical
evidence of all the characteristics of the ongoing
software process and resultant product and continually
expanding that understanding through
experimentation and process refinement within a
specific software production environment.

1.2 SEL Process Improvement
Strategy

As originally conceived, the SEL planned to apply
selected techniques and measure their impact on cost
and reliability in order to produce empirical evidence
that would provide rationale for the evolving
standards and policies within the organization. As
studies were performed, it became evident that the
attributes of the development organization were an
increasingly significant driver for the overall
definition of process change. These attributes include
the types of software being developed, goals of the
organization, development constraints, environment
characteristics, and organizational structure. This
early and important finding provoked an integral
refinement of the SEL approach to process change.
The most important step in the process improvement
program is to develop a baseline understanding of the
local software process, products, and goals. The
concept of internally driven, experience-based process
improvement became the cornerstone of the SEL’s
process improvement program.

Incorporating the key concept of change guided by
development project experiences, the SEL defined a
standard paradigm to illustrate its concept of software
process/product improvement. This paradigm is a
three-phase model (Figure 1) which includes the
following steps:

1. Understanding: Improve insight into the
software process and its products by
characterizing the production environment,
including types of software developed, problems
defined, process characteristics, and product
characteristics.

2. Assessing: Measure the impact of available
technologies and process change on the products
generated. Determine which technologies are
beneficial and appropriate to the particular
environment and, more importantly, how the
technologies (or processes) must be refined to
best match the process with the environment.

3. Packaging: After identifying process
improvements, package the technology for
application in the production organization.

SEL-94-005 4

ASSESS
(Experiment)

PACKAGE

Infuse improved (verified) process

• What impact does change have?

Know your software business (process and product)

UNDERSTAND

Iterate

• How do we do business today? (e.g., standards and techniques used, % time in
testing, module size)

 What are our product characteristics? (e.g., error rates, productivity, complexity)•

Goals

(e.g., reduce

error rates) Determine improvements to your business

• Standards, tools, and training

Figure 1. The SEL Process Improvement Paradigm

This includes the development and
enhancement of standards, tools, and training.

In the SEL process improvement paradigm, these
steps are addressed sequentially, and iteratively, for as
long as process and product improvement remains a
goal within the organization.

The SEL approach to continuous improvement is to
apply potentially beneficial techniques to the
development of production software and to measure
the process and product in enough detail to determine
the value of the applied technology within the specific
domain of application. Measures of concern (such as
cost, reliability, and cycle time) are identified as the
organization determines its major short- and long-
term objectives for its software product. Once these
objectives are known, the SEL staff designs an
experiment(s), defining the particular data to be
captured and the questions to be addressed in each
experimental project. A unique strength of the SEL’s
process improvement approach is that it was
developed and has evolved based on scientific
method. Over the years, its key concepts, briefly
described below, have been captured and formalized
in the open literature:

• Process evolution: the Quality Improvement
Paradigm (Reference 1)

• Measurement and control: the Goal/
Question/Metric method (Reference 2)

• Structure and organization: the Experience
Factory (Reference 3)

The Quality Improvement Paradigm is a two-loop
feedback process (project and organization loops) that
is a variation of the scientific method. It consists of
the following steps:

• Characterization: Understand the environment
based upon available models, data, intuition,
etc., so that similarities among projects can be
recognized.

• Planning: Based on this characterization, set
quantifiable goals for successful project and
organization performance and improvement and
choose the appropriate processes and supporting
methods and tools to achieve the improvement
goals in the given environment.

5 SEL-94-005

• Execution: Construct the products using the
selected processes and provide real-time project
feedback based on the goal achievement data.

• Packaging: At the end of each specific project,
analyze the data and the information gathered to
evaluate the current practices, determine prob-
lems, record findings, and make recommenda-
tions for future project improvements. Then,
package the experience gained in the form of
updated and refined models and other forms of
structured knowledge based on this and prior
project experience. Finally, store the packages
in an experience base so they are available for
future use.

The Goal/Question/Metric (GQM) method is used
to define measurement on the software project,
process, and product in such a way that

• Resulting metrics are tailored to the
organization and its goal.

• Resulting measurement data play a constructive
and instructive role in the organization.

• Metrics and their interpretation reflect the values
and the viewpoints of the different groups
affected (e.g., developers, users, operators).

GQM defines a measurement model on three levels:

• Conceptual level (goal): A goal is defined for
an object, for a variety of reasons, with respect
to various models of quality, from various
points of view, and relative to a particular
environment.

• Operational level (question): A set of questions
is used to define models of the object of study
and then focuses on that object to characterize
the assessment or achievement of a specific goal.

• Quantitative level (metric): A set of metrics,
based on the models, is associated with every
question in order to answer it in a measurable
way.

Although originally used to define and evaluate a
particular project in a particular environment, GQM
can also be used for control and improvement of a
single project within an organization running several
projects (References 4 and 5).

The Experience Factory organizational concept was
introduced to institutionalize the collective learning
of the organization that is at the root of continual
improvement and competitive advantage. It estab-
lishes a separate organizational element that supports
reuse of experience and collective learning by devel-
oping, updating, and delivering experience packages
to the project organization which is responsible for
developing and maintaining software. This structure
creates a symbiotic relationship where the

• Project organization offers to the experience
factory its products, the plans used in its
development, and the data gathered during
development and operation.

• Experience packagers transform these objects
into reusable units and supply them to the
project organization, together with specific
support that includes monitoring and
consulting.

As an operational experience factory, the SEL has
been facilitating software process improvement within
the FDD at NASA/GSFC for 18 years (Reference 6).
All SEL experiments have been conducted in this
production environment, which consists of
approximately 250 engineers developing and
maintaining systems that range in size from 10
thousand source lines of code (KSLOC) to over 1.5
million SLOC. The original SEL production
environment had approximately 75 developers
generating software to support a single aspect of the
flight dynamics problem. Over the years, the SEL
operation has grown to include more extensive
software responsibilities and, consequently, a larger
production staff of developers and analysts.

The SEL’s pioneering work in the practical
application of software process improvement concepts
in the FDD has been recognized throughout the
software engineering community. In 1994, the SEL
was chosen as the inaugural recipient of the IEEE
Computer Society Award for Software Process
Achievement. This award recognizes not only
process achievement, but leadership in the field and
outstanding contribution to the state-of-the-practice in
software engineering. The SEL has been in
continuous operation since 1976, and will continue
to operate as long as process and product
improvement remain a priority within its software
domain.

7 SEL-94-005

Section 2. The SEL Organization

The SEL comprises three partner organizations: the
Software Engineering Branch at NASA/GSFC, the
Institute for Advanced Computer Studies and
Department of Computer Science at the University of
Maryland, and the Software Engineering Operation at
CSC. The total organization consists of
approximately 300 persons. These personnel are
divided into three functional components, not
necessarily across organizational lines. The three
functional areas are

• Software development/maintenance

• Process/product analysis

• Data base support

The three components (developers, process analysts,
and data base support) are separate, yet intimately
related to each other. Each has its own goals, process
models, and plans, but they share an overall mission
of providing software that is continually improving in
quality and cost effectiveness. The responsibilities,
organizational makeup, and goals of the SEL
components are discussed in the chapters that follow.
Figure 2 provides a graphic overview of their function
and size, and Table 1 depicts the difference in focus
among the three groups.

DEVELOPERS

(SOURCE OF EXPERIENCE)

PROCESS ANALYSTS

(PACKAGE EXPERIENCE FOR REUSE)

DATA BASE SUPPORT

(MAINTAIN/QA EXPERIENCE INFORMATION)

STAFF

TYPICAL PROJECT
SIZE

ACTIVE PROJECTS

PROJECT STAFF
SIZE

TOTAL PROJECTS

(1976-1994)

STAFF

FUNCTION

PRODUCTS
(1976-1994)

SEL DATA BASE 160 MB

FORMS LIBRARY 220,000

REPORTS LIBRARY

• SEL reports
• Project documents
• Reference papers

STAFF 5-8 support staff

FUNCTION • Process forms/data

• QA all data

• Record/archive data

• Maintain SEL data base

• Operate SEL library

 10-15 analysts

 • Set goals/questions/metrics

• Design studies/experiments

 • Analysis/Research

 • Refine software process

• Produce reports/findings

 300 reports/documents

NASA + CSC + U of MD

250-275 developers

100-300 KSLOC

6-10 (at any given time)

5-25 people

120

NASA + CSC

NASA + CSC

Development
measures for
each project

Refinements to
development

process

Figure 2. SEL Structure

SEL-94-005 8

Table 1. Focus of SEL Organizational Components

DEVELOPERS
PROCESS
ANALYSTS

DATA BASE
SUPPORT STAFF

Focus and
scope

• Specific software
project

• Domain (multiple
projects)

• Domain (multiple
projects)

Goals • Produce and maintain
software

• Satisfy user
requirements

• Analyze development
and maintenance
experience to define
improvement process

• Support developers

• Archive, maintain and
distribute
development and
maintenance
experience

Approach • Use the most
effective software
engineering
techniques, as
provided by the
analysts

• Experiment with new
techniques with the
analysts’ support

• Assess the impact of
specific technologies

• Produce models,
standards, and
training materials

• Maintain a library of
experiences, models,
and standards

Measure of
success

• Validation and
verification of software
products

• Packaging and reuse
of empirical software
experience

• Improved software
products

• Efficient processes
for information
retrieval (data,
models, reports)

2.1 Software
Development/Maintenance

The FDD development organization, comprising
approximately 250–275 professional software
developers, is responsible for development and
maintenance of one segment of the ground support
software used by GSFC. The majority of the
software developers are CSC employees under
contract to NASA/GSFC; approximately 35 of the
developers are employees of NASA/GSFC. SEL staff
at the University of Maryland do not participate
directly in the development or maintenance of flight
dynamics software.

For a typical project, FDD developers are provided a
set of functional requirements for a mission, from
which they design, code, test, and document the
software. The systems developed are primarily non-
real time, non-embedded, ground-based applications,
and there are usually four or five projects in
development at any one time. Traditionally, most of
the software has been written in FORTRAN,
although the organization is currently evolving to
using C, C++, and Ada for new systems. After the
newly developed mission support software is tested
and accepted, another team from this same

organization takes over maintenance of the operational
system. Approximately 50 percent of the
development staff is allocated to software
maintenance.

The primary task of the development organization is
to produce quality software on-time and within
budget. They rely on another element of the SEL to
carry out the analysis and packaging of the process
improvement studies. The development organization
is not expected to produce standards, policies, or
training; nor are the developers expected to analyze
data. The success of the development organization
is measured by their ability to deliver a quality
software product that meets the needs of the user.

2.2 Process/Product Analysis

The second major function within the SEL is
analysis and process improvement. This effort is
supported by personnel from all three member
organizations: approximately 4 full-time people from
NASA/GSFC; 5–10 individuals, each spending
approximately 20 percent of their time, from the
University of Maryland; and approximately 5–8 full-
time people at CSC. This team defines studies to be
conducted, analyzes process and products generated
by the developers, and packages its findings in the

9 SEL-94-005

form of updated standards, revised training programs,
and new models specific to this development
environment. All of the SEL analysts are experienced
software engineers, many of whom have a number of
years of experience in flight dynamics software
development and/or maintenance.

The analysts use information such as development
environment profiles, process characteristics, resource
usage, defect classes, and statistics to produce models
of products and processes, evaluations, and refined
development information. Their products include
cost and reliability models, process models, domain-
specific architectures and components, policies, and
tools.

The goal of the analysts is to synthesize and package
experiences in a form useful to the development
group. Their success is measured by their ability to
provide in a timely way products, processes, and
information that can assist the developers in meeting
their goals.

2.3 Data Base Support

The third function within the SEL is the data
processing and archiving of the projects’ experiences
in the SEL’s measurement data base. This is
supported by approximately three full-time people at
NASA/GSFC and approximately five full-time people
at CSC. The data base support staff collect the data
that have been defined and requested by the analysts;
assure the quality of those data; organize and
maintain the SEL data base; and archive the reports,
papers, and documents that make up the SEL library
(see Figure 2). The group includes both professional
software engineers, who define and maintain the data
base, and data technicians, who enter the data,
generate reports, and assure the quality of the
information that is submitted to the SEL library.

The goal of the data base support organization is to
manage the SEL measurement data and analysis
products efficiently. Their success is measured by the
efficient collection, storage, and retrieval of
information, conducted in a way that doesn’t burden
the overall organization with unnecessary activities
and waiting periods.

11 SEL-94-005

Section 3. The SEL Process Improvement Concept

The SEL process improvement concept has matured
over more than a decade, with the most significant
changes to it being driven by experience at attempts
to infuse process change and improvement within a
production organization. The SEL improvement
concept, which is formalized in the Experience
Factory model, can be described as a “bottom-up”
software improvement approach (Reference 7), where
the process is defined and improved based on
corporate knowledge that is extracted from the
experiences of projects at the lowest level or bottom
of the organization. The SEL approach focuses on
continually using experiences, lessons, and data from
production software projects to ensure that subsequent
development efforts benefit, in terms of improved
software products and processes, from the experience
of earlier projects. The underlying principle of this
concept is the reuse of software experiences to
improve subsequent software tasks. This reuse of
experience is the driving element for change and
improvement in the software process.

3.1 Bottom-Up Improvement

Although the term “ process improvement” is the
term most commonly used to characterize the efforts
of an organization to improve its software business,
the SEL philosophy asserts that the actual goal of the
organization is to improve the software product. The
process improvement concept stems from an
assumption that an improved process will result in an
improved product. However, if a changed process has
no positive impact on the product generated, then
there is no justification for making change. A
knowledge of the products, goals, characteristics, and
local attributes of a software organization is needed to
provide guidance to the evolutionary change to
process that focuses on the desired change to the
product as defined by the goals of the organization.

Two approaches to software process improvement
have been developed and applied in the industry.
The top-down approach (which is based on the
assumption that improved process yields improved
product) compares an organization’s existing process
with a generally accepted high-quality standard
process. Process improvement is then defined as the
changes made to eliminate the differences between the
existing process and the standard set of practices.

This approach assumes that after change is made to
the process the generated products will be improved,
or at least there will be less risk in the generation of
new software. The most widely accepted and applied
top-down model is the capability maturity model
(CMM) (Reference 8), developed by the Software
Engineering Institute (SEI).

The SEL approach assumes that changes must be
driven from the bottom up, by local goals,
characteristics, and product attributes. Changes are
defined by a local domain instead of by a universal
set of accepted practices. In this approach, software
process change is driven by the goals of the particular
development organization as well as by the
experiences derived from that local organization. For
example, an organization whose primary goal is to
shorten “time-to-ship” may take a significantly
different approach to process change than an
organization would whose primary goal is to produce
defect-free software.

The top-down approach is based on the assumption
that there are generalized, universal practices that are
required and effective for all software development,
and that without these practices, an organization’s
process is deficient. This paradigm has been accepted
in many software organizations that have applied
generalized standards, generalized training, and even
generalized methods defined by an external
organization (external to the developers) to all their
software. This concept does not take into account the
performance issues, problems, and unique software
characteristics of the local organization. The implicit
assumption is that even if an organization’s goals are
being met and exceeded, if that organization does not
use the commonly accepted practices, it has a higher
risk of generating poor-quality products than an
organization that adheres to the defined processes.
The goals and characteristics of the local organization
are not the driving elements of change.

The underlying principle of the SEL approach is that
“not all software is the same.” Its basic assumption
is that each development organization is unique in
some (or many) aspects. Because of that, each
organization must first completely understand its
local software business and must identify its goals
before selecting changes meant to improve its
software process. If, based on that understanding,

SEL-94-005 12

change seems called for, then each change introduced
is guided by “experience”—not by a generalized set
of practices.

Neither the top-down approach nor the bottom-up
approach can be effective if used in isolation. The
top-down approach must take into consideration
product changes, while the bottom-up approach must
use some model for selecting process changes aimed
at improving product characteristics. Each concept
plays an important role in the goal of improving the
software business.

3.2 Measurement

The SEL approach uses a detailed understanding of
local process, products, characteristics, and goals to
develop insight. This insight forms the foundation of
a measurable, effective change program driven by
local needs. Because of this dependence on
understanding the software within the subject
environment, measurement is an inherent and vital
component of the SEL approach—measurement of
process and product from the start, measurement of
the effect of process change on the product, and
measurement of product improvement against the
goals of the organization. The CMM provides
guidance in building an understanding of software
process within the development organization, but the
SEL paradigm extends this concept to include
product characteristics such as productivity, error
rates, size attributes, and design characteristics.

In the SEL approach, measurement is not viewed as a
process element that is added as an organization
matures, but rather as a vital element present from the
start of any software improvement program. An
organization must use measurement to generate the
baseline understanding of process and product that
will form the basis of the improvement program.

The CMM includes the “software process
assessment” tool, which is effective for generating
baseline process attributes. The SEL’s bottom-up
approach adds to those measures measurement of
specific product characteristics, so that change can be
effectively guided and observed.

The SEL concept is driven by the principle that each
domain or development organization must develop
and tailor specific processes that are optimal for its
own usage. Certainly, some processes and technolo-
gies are effective across a broad spectrum of domains

(possibly even universal), but before a development
organization settles on a particular process it must
take the critical steps of understanding its software
business and determining its goals. From there,
change can be introduced in a structured fashion and
its impact measured against the organizational goals.

3.3 Reuse of Experience

Historically, a significant shortcoming in software
development organizations has been their failure to
capitalize on experience gained from similar
completed projects. Most of the insight gained has
been passively obtained instead of being aggressively
pursued. Software developers and managers generally
do not have the time or resources to focus on
building corporate knowledge or planning
organizational process improvements. They have
projects to run and software to deliver. Thus, reuse
of experience and collective learning must become a
corporate concern like a business portfolio or
company assets. Reuse of experience and collective
learning must be supported by an organizational
infrastructure dedicated to developing, updating, and
supplying upon request synthesized experiences and
competencies. This organizational infrastructure
emphasizes achieving continuous sustained
improvement over identifying possible technology
breakthroughs.

The SEL represents this type of organizational ele-
ment. It is focused solely on reuse of experience and
software process improvement with the goal of im-
proving the end product. Because these activities
rely so significantly on actual software development
experiences, the developers, analysts, and data base
support staff organizations, while separate, are inti-
mately related to each other. Developers are involved
in process improvement activities only to the extent
that they provide the information and data on which
all process change is based. Process/product analysts
and data base support personnel are dedicated to their
process improvement responsibilities and are in no
way involved in the production of software product.
Additionally, the SEL research/data base support
teams have management and technical directors
separate from the development projects. This ensures
continuity and objectivity in process improvement
activities and the availability of resources for
building, maintaining, and sustaining the process
improvement program.

13 SEL-94-005

Section 4. SEL Experimentation and Analysis

Each production project in the FDD is considered an
opportunity for the SEL to expand its knowledge
base of process understanding and improvement.
There are typically 4 or 5 projects under development
at any one time, and an additional 15 to 20 projects
in the maintenance phase. All of the projects in the
FDD environment are considered experiments, and
the SEL has completed over 120 project studies over
the years. For each of these projects, detailed
measurements were provided toward the end goal of
analyzing the impact that any change to software
process had on the resultant software product.

When research in the production environment is
being planned, the following activities occur: the
SEL analysis team defines a set of goals that reflects
current goals in process/product improvement and
writes an experiment plan in which required data are
identified and experimental processes are outlined; a
SEL representative is assigned to the pro-
ject/experiment; and technology/process training
needs are assessed. SEL software develop-
ment/maintenance project personnel then provide the
requested information (defined in the experiment plan)
to the SEL data base support staff who add it to the
data base for access by the analysts conducting the
experiment. These SEL activities are described in
the sections that follow.

4.1 Defining Experiments

Based on organizational goals and process
weaknesses identified in the understanding step, SEL
analysts identify software process modifications that
they hypothesize are likely to improve the resultant
product. To do this, analysts review literature
looking for candidate new technologies that address
the particular needs of their organization. In cases
where the candidate technologies are closer to the
state-of-the-art than the state-of-the-practice, university
studies are conducted on test beds before an
experiment is undertaken in the production
environment. Analysts also consult developers who
have insight into the problem area and who may
suggest promising process changes to pursue.

For each process modification selected, the analysts
design an experiment to test the hypothesis. As
experiments are being defined, the analysts consult
the development team to determine if proposed

changes (such as applying a particular technique)
could be studied on a project without undue risk.
Even if risk is significant, a team may be willing to
try the new process provided a contingency plan is
developed to assure that a disaster can be avoided. It
is important that the development team be factored
into decisions on the proposed changes and that their
full support is obtained.

Once a project is identified and a modified process is
selected, an experiment plan is written describing the
goals, measures, team structure, and experimental
approach. A sample SEL experiment plan is
included in Appendix A. If the study is very small
(e.g., collect inspection data to measure the cost of
software inspections), a formal experiment plan may
not be written.

The basic project/experiment information is then
provided to the SEL data base support group so that
project names, subsystem names, personnel
participating, and forms expected can be logged, and
the data base can be readied for data entry.

Once an experiment is defined and the study
objectives have been agreed upon with the
developers, a representative from the analysts is
assigned to work directly with the development team
for the duration of the project. This representative
keeps the development team informed of experimental
progress, provides information on the particular
process changes being applied, and answers any
questions the development team may have with
regard to SEL activities. The SEL representative
does not manage or direct the development project in
any way. The SEL representative attends reviews
and development status meetings and looks at
measurement data collected. At the conclusion of the
project, the SEL representative also writes a section
for inclusion in the project’s development history
report which discusses the experimental goals and
results.

For most projects, the experiment being conducted
does not have a significant impact on the
development procedures and typically does not
involve major changes to the technologies being
applied. If there is a more significant change (e.g.,
using Ada, applying Cleanroom technique, or using
inspections with a team unfamiliar with the
technology), the analysts arrange for training for the

SEL-94-005 14

development team. For example, when the SEL
studied Cleanroom technique on one project,
approximately 40 hours of training in the technique
was provided to the first development team using it
in this environment (Reference 9).

4.2 Collecting Measures

In support of the SEL experiments, technical and
management staff responsible for software
development and maintenance provide the requested
measurement data. Although the types of data
requested may vary from project to project to satisfy
the requirements of particular experiments, the core
set of information is invariant. Basic data are
collected from every project, including effort, defects,
changes, project estimates, project dynamics (e.g.,
staffing levels), and product characteristics. These
data are provided on data collection forms. Figures 3
and 4 are samples of the forms used to report effort
data and defect/change data. Details of the core
measures used, as well as the measurement program
in general, can be found in the Software Measurement
Guidebook (Reference 10). The full set of data
collection forms and procedures can be found in the
Data Collection Procedures for the SEL Database
(Reference 11).

As the developers/maintainers complete the forms,
they submit them to the data base support personnel
who assure the quality of the information by checking
the forms and data for consistency and completeness.
When data are missing (e.g., if an expected form is
not submitted), the developer is informed of the
discrepancy and is expected to provide or correct the
data. Data base support staff then enter the data in a
central data base and perform a second quality-
assurance step by checking for data entry errors by
comparing the data base information against the
original paper forms.

In addition to the forms that are completed by the
developers and managers, several tools are used to
gather information automatically such as source code
characteristics (e.g., size, amount of reuse,
complexity, module characteristics) or changes and
growth of source code during development. Data
base support personnel execute the tools to gather
these additional measures, which are then entered in
the SEL data base.

Additionally, subjective measures are recorded on the
development process. These data are obtained by
talking with project managers and by observing
development activities. Data such as problem
complexity, adherence to standards, team experience,
stability, and maturity of support environment are
captured at the termination of each project. (See
Reference 10 for details on these measures.)

Figure 5 depicts the life-cycle phases during which
the core SEL measures are collected. Each project
provides these data and may provide additional
measures required for the specific experiment in which
it is participating.

4.3 Analyzing Data

The analysts use these data together with information
such as trend data, previous lessons learned, and
subjective input from developers and managers, to
analyze the impact of a specific software process and
to build models, relations, and rules for the corporate
memory. As specific processes are studied (such as
inspections, Cleanroom), the analysts, joined by
willing participants from the development
organization, complete analysis reports on the study
and may even prepare a paper or report for publication
in the open literature. Development team
participation is strictly voluntary in this step, as the
analysts are ultimately responsible for producing the
report.

As the project information becomes available, the
analysts use it not only to assess particular processes,
but also to build models of the process and product
so that the experiences of each development effort can
be captured and applied to other projects where
appropriate. Data are used to build predictive models
representing cost, reliability, code growth, test
characteristics, changes, and other characteristics.
The analysts also look at trends and processes
applied to determine whether or not any insight can
be gained from data describing particular
methodologies used during development or
maintenance.

One of the most important facts that the SEL has
learned from its experience with analysis of software
data is that the actual measurement data represent
only one small element of experimental software
engineering. Too often, data can be misinterpreted,
used out of context, or weighted too heavily even
when the quality of the information may be suspect.

15 SEL-94-005

Personnel Resources Form
Name:

Project: Date: (Friday):

SECTION A: Total Hours Spent on Project for the Week:
SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Predesign

Create
Design

Read/Review
Design

Write Code

Read/Review
Code

Test Code
Units

Debugging

Integration
Test

Acceptance
Test

Other

Understanding the concepts of the system. Any work prior to the actual
design (Such as requirements analysis).

Development of the system, subsystem, or components design. Includes
development of PDL, design diagrams, etc.

Hours spent reading or reviewing design. Includes design meetings, formal
and informal reviews, or walkthroughs.

Actually coding system components. Includes both desk and terminal code
development.

Code reading for any purpose other than isolation of errors.

Testing individual components of the system. Includes writing test drivers.

Hours spent finding a known error in the system and developing a solution.
Includes generation and execution of tests associated with finding the error.

Writing and executing tests that integrate system components, including
system tests.

Running/supporting acceptance testing.

Other hours spent on the project not covered above. Includes management,
meetings, training hours, notebook, system description, user's guides, etc.

5
1

5
0

g
(2

1
)-

3
8

Activity Activity Definitions Hours

SECTION C: Effort On Specific Activities (Need not add to A)
 (Some hours may be counted in more than one area; view each activity separately)

Rework: Estimate of total hours spent that were caused by unplanned changes or errors.
Includes effort caused by unplanned changes to specifications, erroneous or changed
design, errors or unplanned changes to code, changes to documents. (This includes all
hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or
clarity of design, or code, or documentation. These are not caused by required changes or
errors in the system.

Documenting: Hours spent on any documentation on the system. Includes development of
design documents, prologs, in-line commentary, test plans, system descriptions, user's
guides, or any other system documentation.

Reuse: Hours spent in an effort to reuse components of the system. Includes effort in looking
at other system(s) design, code, or documentation. Count total hours in searching,
applying, and testing.

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

Figure 3. Effort Data Collection Form

SEL-94-005 16

Effort: What additional components
were examined in determining what
change was needed?

Describe the change: (What, why, how)

Location of developer's source files_______________________________________

CHANGE REPORT FORM
Name:______________________________________

Project:__________________________________

Approved by:________________

Date:________________

Section A – Identification

Need for change determined on:
Change completed (incorporated into system):

day yearmonth

Effort in person time to isolate the change (or error):

Effort in person time to implement the change (or correction):

1 hr/less 1 hr/1 day 1/3 days >3 days

Check here if change involves Ada
components (If so, complete
questions on reverse side)

Section B – All Changes

Improvement of user services

Insertion/deletion of debug code

Optimization of time/space/
accuracy

Adaptation to environment change

Other (Describe below)

Type of Change (Check one) Effects of Change

Was the change or correction to one and only one
component? (Must match Effect in Section A)

Did you look at any other component? (Must match
Effort in Section A)

Did you have to be aware of parameters passed
explicitly or implicitly (e.g., COMMON blocks) to or
from the changed components?

Y N

Section C – For Error Corrections Only

Requirements

Functional specifications

Design

Code

Previous change

Source of Error
(Check one)

Class of Error
(Check most applicable)*

Initialization

Logic/control structure
(e.g., flow of control incorrect)

Interface (internal)
(module-to-module communication)

Interface (external)
(module to external communication)

Data (value or structure)
(e.g., wrong variable used)

Computational
(e.g., error in math expression)

*If two are equally applicable, check the
one higher on the list.

Characteristics
(Check Y or N for all)

Y N

Omission error (e.g., something was left out)

Commission error (e.g., something incorrect was
included)

Error was created by transcription (clerical)

Number:__________________________
Date:____________________________
Entered by:_______________________
Checked by:______________________

For Librarian's Use Only

62
01

g(
13

)-
09

Prefix Name Version

Effect: What components are changed?

(Attach list if more space is needed)

NOVEMBER 1991

Error correction

Planned enhancement

Implementation of
requirements change

Improvement of clarity,
maintainability, or documentation

Figure 4. Defect/Change Data Collection Form

17 SEL-94-005

• Size
• Cost
• (etc.)

• Methods
• Tools
• (etc.)

Process

Product

Project estimates (size, cost, dates, reuse)

Errors/changes
(unit test to delivery)

Dynamics
(growth, changes, …)

Maintenance effort

Maintenance errors/changes

Development effort (tracked by time and
by activity)

Maintenance estimates

Functional
requirements

received

Requirements
Analysis

Design Code Acceptance

Begin maintenance and operation

MaintenanceTest

S
a

m
p

le
 d

a
ta

 p
h

a
se

s

Figure 5. SEL Core Measures

Having learned from its extensive data analysis
experience over the years, the SEL now follows these
key rules (Reference 10):

• Software measures will be flawed, inconsistent,
and incomplete; the analysis must take this into
account. Do not place unfounded confidence in
raw measurement data.

Even with the extensive quality-assurance process and
the rigor of the software measurement collection
process in the SEL, the uncertainty of the data is still
quite high. An analyst must consider subjective
measures, qualitative analysis, definition of the
context, and an explanation of the goals. If one
merely executes a high number of correlation analysis
studies on a high number of parameters, chances are
that some (possibly very questionable) statistic will
appear. Extreme caution must be applied when using

software measurement data, especially when the
analyst is not intimately familiar with the
environment, context, and goals of the studies.

• Measurement activity must not be the dominant
element of software process improvement;
analysis is the goal.

When the SEL began to study software process, the
overhead of the data collection process dominated the
total expenditures for experimental activities. As the
SEL matured, it found that the successful analysis of
experiments should consume approximately three
times the amount of effort that data collection
activities require. This ratio was attained through a
gradual cutback in data collection to where the only
information requested (beyond the core measures) was
that which could be clearly defined as relevant to the
goals of a particular experiment.

SEL-94-005 18

• Measurement information must be treated
within a particular context; an analyst cannot
compare data where the context is inconsistent
or unknown.

Each set of measurement data that is archived in the
SEL data base represents a specific project, with
unique characteristics and unique experimental goals.
These goals may have significantly influenced the
process used, the management approach, and even the
general characteristics of the project itself. Without
knowledge of the context in which the data were
generated and the overall project goals as well as
process goals, significant misinterpretations of the
data can result.

4.4 Improving Process

Measurement activities represent a relatively small
element of the overall process improvement task.
Results of analysis of experimental data must be
judiciously applied toward optimizing the software
development and maintenance process. The
experimental software engineering results are captured
both in studies as well as in refined processes
available to the production personnel. The SEL
packages its analysis results in the form of updated
standards, training, and tools. This packaging
facilitates the adoption of revisions to the standard
processes on ongoing and future software projects.

The SEL conducts three general types of analysis, all
of which are active continually in the environment.
They include

• Pilot studies of specific techniques and
technologies on a project or set of projects [e.g.,
Cleanroom impact on design, impact of object-
oriented design (OOD) on code reuse, impact of
inspection on coding errors].

• Studies of completed projects for development
and refinement of local process and product
models (e.g., cost models, error characteristics,
reuse models).

• Trend analysis of completed projects to track
the impact of specific process changes on the
environment as a whole (e.g., tailored
Cleanroom, OOD, software standards).

All of the analyses are dependent on the project
measures and all require a thorough understanding of
context, environment, goals, problem complexity,
and project characteristics to be able to derive results

that can be fed into the overall process improvement
program.

A study of a specific process or technique is usually
termed a “pilot study.” Although these studies often
occur in the university environment, they are also
conducted on production projects where some risk
can be tolerated. These projects are testing new and
unfamiliar techniques to determine their value in the
production environment and to determine whether
more extensive studies would be beneficial. On pilot
projects, the analyst typically analyzes each phase of
the project in detail and reports back to the
development team the intermediate results as the
project progresses toward completion. In general, the
SEL conducts no more than two pilot studies at any
one time because of the extensive amount of analysis
and reporting. These studies normally yield multiple
reports and papers that look at every aspect of the
impact of the new technology, make
recommendations for tailoring, and project the value
of the enhanced process in an expanded application.

The second class of study involves multiple projects,
where the goal is to expand and update the
understanding of process and product attributes. Cost
models are enhanced, error attributes are studied, and
relations between process and product characteristics
are analyzed for classes of projects. These studies
normally do not use data from projects under
development, but focus on completed projects. This
type of analysis requires not only the archived
measurement data, but also a detailed knowledge of
each project’s context (including goals, processes
used, problem complexity, size, and other product
attributes). Trends in software quality, productivity,
as well as profiles of the software product are
produced so that specific needs and potential process
enhancements can be identified.

Trend analysis also looks at multiple completed
projects. The goal of these studies is to determine
the appropriate application of evolving technology
and methods within the environment as a whole, or
at least for a specific class of projects. After pilot
projects have been completed and appropriate
tailoring or enhancement of process changes have
been made, additional projects apply the tailored
process. The additional application of the methods
may involve only a single element of the originally
defined process. For instance, although the
Cleanroom methodology includes specific techniques
for management, design, implementation, testing,
and the inspection process, it may turn out that only
the implementation and testing techniques are

19 SEL-94-005

appropriate for further application. Once it is
determined which process changes are appropriate for
a broader class of projects (or possibly the entire
development environment), these elements of the
process are incorporated into the software standards.

Additionally, the training program may be updated to
reflect the refined process. (See the discussion of
packaging in Chapter 5 for a detailed description of
the SEL training program.)

21 SEL-94-005

Section 5. SEL Experiences: Understanding,
Assessing, and Packaging

The SEL paradigm has been applied on
approximately 120 production projects in the FDD.
Each project has provided detailed measurement data
for the purpose of providing more insight into the
software process, so that the impact of various
software technologies could be empirically assessed.
Projects have ranged in size from 10 thousand source
lines of code (KSLOC) to 1.5 million SLOC, with
the majority falling in the 100–250 KSLOC range.
All of the information extracted from these
development and maintenance projects is stored in
the SEL data base and used by the analysts who
study the projects and produce reports, updated
standards, tools, and training materials.

During the understanding phase of the SEL
paradigm, the goal is to produce a baseline of
development practices and product attributes against
which change can be measured as process
modifications are applied. Additionally, the
understanding process generates the models and
relations used to plan and manage the development
and maintenance tasks. The goal of the assessing or
experimental phase is to determine the impact of
specific process changes on the overall goals of the
organization. In the packaging phase of the
paradigm, those practices that have proven
measurably beneficial are incorporated into the
organization’s standards, policies, and training
programs.

5.1 Understanding

The most critical element of the SEL’s process
improvement program is the understanding step—
where the only goal is to gain insight into the local
software business. This first step cannot provide the
justification for claiming that one process is better
than another, but instead yields a baseline of the
characteristics of the software, including both process
and products, based on which change and meaningful
comparison can be made.

Although the initial plan was to begin experimenting
with various techniques, the SEL soon learned that
without a firm, well-understood baseline of both
process and product characteristics, valid experimen-

tation was impossible. In order to build this
understanding, information gathered from the first
5-10 projects was primarily used to generate models,
relations, and characteristics of the environment.
These models and their understanding proved to be a
significant asset to the management, planning, and
decision-making needed for effective software
development.

The understanding process, begun with those first
5-10 projects, continues today on all projects. The
various models are continually updated as the process
is better understood, and as new technologies and
methods change the way the SEL views software
development. Table 2 lists 11 projects active
between 1985 and 1990 that were included in the
early SEL baseline.

Table 2. SEL Baseline (1985-1990)

Project Start Date End Date

GROSIM 8/85 8/87

COBSIM 1/86 5/87

GRODY 9/85 7/88

COBEAGSS 6/86 7/88

GROAGSS 8/85 4/89

GOESIM 9/87 7/89

GOFOR 6/87 9/89

GOESAGSS 8/87 11/89

UARSTELS 2/88 12/89

GOADA 6/87 4/90

UARSAGSS 11/87 9/90

By examining the effort data of these projects, the
SEL built its baseline of software cost expenditures
by phase and by activity. This is some of the most
basic, yet often overlooked, information for software
environments. By looking at a series of projects, a
simple model of effort distribution can be built to
depict the cost of design, code, test, and other
activities. Such data are accumulated weekly from all
developers, managers, and technical support using a

SEL-94-005 22

data collection form. The form captures effort
expended on software design, testing, coding, and the
amount of time spent on code reading vs. code
writing. (See Figure 3 for a sample effort data
collection form.)

Figure 6 illustrates distribution for the effort data
based on the projects in this baseline. These data
represent 11 projects over 5 years, consuming a total
of approximately 65 staff-years of effort. The data
show that approximately 25 percent of the cost of
producing the software is spent on activities other
than designing, coding, or testing. This “other”
activity includes meetings, travel, reviews, training,
etc. The SEL has found that this value has remained
almost constant for the entire time the SEL has been
closely monitoring projects; in fact, it has increased
slightly over time instead of decreasing as SEL staff
first expected that it would. This time represents an
important component for project budgets, one that is
often overlooked by managers who lack a thorough
understanding of their baseline process. One
surprising observation has been that the basic
characteristics of this environment do not radically
change from year to year even with continuous
modifications being made to the underlying

processes. The profile of the software environment
changes very slowly. In Figure 6, the data are
represented in two ways:

• One representation is effort by phase, where the
total hours reported each week are attributed to
the phase that the project is currently executing;
i.e., designing from start through review and
acceptance of design, coding from start through
beginning of system testing, and testing from
the start through system delivery. These data
require only that the phase dates be known and
that the total hours worked each week be
reported by the development staff.

• The second representation is effort by activity,
where weekly information is broken down to the
particular activity that the programmers were
performing during that week. For example,
they may report design hours even though the
project was well into the coding phase. This
modeling of the data provides a more accurate
view of project interactions, as compared to the
model that relies on (somewhat arbitrary) phase
dates often set before project initiation.

85%
code writing

15%
code reading

Other
26%

Design
23%

Test
30%

Code
21%

EFFORT DISTRIBUTION BY ACTIVITYEFFORT DISTRIBUTION BY LIFE-CYCLE PHASE

Req Analysis
12%

Preliminary
Design

8%

Detailed Design
15%

Implementation
30%

Sys Test
20%

Acc Test
15%

Figure 6. Effort Distribution by Phase and Activity

23 SEL-94-005

Along with cost and schedule, reliability and
correctness of the resulting code are considered
attributes of interest to management. These attributes
also contribute to the expanding understanding of the
software process and product in the environment.
The SEL captures these attributes by collecting defect
data. The SEL defined its own classes of errors to
ensure internal consistency in the data. Types of
errors include

• Computational errors—improper calculations
within the source program, such as writing the
wrong form of an expression.

• Initialization errors—improper settings of the
initial value of variables.

• Logic/control errors—errors in flow control in a
program, such as incorrect branches as the result
of evaluating an if-statement expression.

• Interface errors—include both internal and
external errors and represent invalid information
(e.g., wrong data) being passed between
modules, such as in a subroutine call.

• Data errors—wrong variable used in a
calculation.

The SEL continually collects error data (starting
when unit test is completed and continuing through

delivery of the software and during maintenance) so
that it continually understands the numbers and types
of errors occurring in the software. This information
is as important as the effort data. Together, they
constitute two of the most critical core measures that
the SEL has found. On maintenance projects, defect
data are collected on a modified form which the SEL
developed in 1990 when the organization became
responsible for software maintenance as well as
development.

Over 2000 errors were classified and studied from the
projects in the 1985-1990 baseline. The error class
distribution as well as the origin of errors (i.e.,
during what phase/activity the defect entered the
software) are shown in Figure 7.

An earlier SEL study of errors provides an example of
how models of software characteristics can be
developed. By tracking five projects of similar
complexity and size, the uncovered errors showed a
decreasing step function for their rate of detection
during sequential phases of the projects. From these
data and trends, the SEL developed an internal model
of expected error occurrence and detection rates for its
class of software (see Figure 8). More recent studies
show that the step function is still present, although
the error rates have decreased significantly.

Computa-
tional
15%

Data
27%

Interface
22%

Logic/
Control

20%

Initializa-
tion
16%

Data from ~11 projects over 5 years (over 4000 errors sampled)

CLASSES OF ERRORS ORIGIN OF ERRORS

Previous
change

10%

Code
40%

Requirements
20%

Design
30%

Figure 7. SEL Error Characteristics

SEL-94-005 24

0

1

2

3

4

5

6

E
R

R
O

R
S

/K
S

L
O

C

CODE/TEST SYSTEM
TEST

ACCEPTANCE
TEST

OPERATIONS

Based on 5 similar projects in SEL (1983-1987)

Figure 8. Error Detection Rate Model

In addition to effort and defect data, other parameters
are useful for developing a total understanding of the
local environment. By counting defects found during
the development of the software, then counting defects
found during the operation and maintenance phases,
the SEL developed a general understanding of the
overall reliability of the software. Models of
characteristics such as defects, change rate, effort
distribution, and documentation size all provide
useful information toward the development of
improved models of software leading toward the
capability of engineering the software process with
well understood relations, models, and rules.

Using a sampling of projects developed during the
early years of the SEL (late 1970s to mid-1980s), a
set of models and relations was produced which was
used as the baseline for planning, managing, and
observing change over time (see Table 3). One of the
more surprising observations was that, after years of
operation, the models changed very slowly—even
with the significant technology and process changes
introduced over time. Table 4 describes the
characteristics of another set of software projects active

during the late 1980s and early 1990s. The
differences between this and the earlier
models/relations are surprisingly small, but there is
change.

Of all the models and relations that the SEL has
developed during the understanding phase, the most
useful for project planning and management and for
observing change have been

• Effort distribution (cost characteristics).

• Error characteristics (numbers, types, origins).

• Change and growth rates (of the source code
during development).

The first two of these have been described in some
detail in this section. These very basic pieces of
information are being collected continually; they are
used to observe change and improvement and to
assess process impact.

25 SEL-94-005

Table 3. Initial SEL Models/Relations

Productivity code rate = 26 new lines per day

Effort distribution Date Activity

Design 26% 23%

Code 38% 21%

Test 36% 30%

Other 26%

Pages of documentation doc = 34.7 (KSLOC.93)

Maintenance cost ~12% development cost per year

Reuse cost

FORTRAN 20% of new

Ada 30% of new

Software size estimate growth 40%

Source: SEL Relationship, Models and Management Rules, 1991

Table 4. More Recent SEL Software Characteristics (late 1980s)

Productivity

FORTRAN code rate = 26 new lines per day

Ada code rate = 36 new lines per day

Effort distribution Date Activity

Low reuse

Design 24% 21%

Code 45% 26%

Test 31% 25%

Other 28%

High reuse*

Design 26% 17%

Code 38% 17%

Test 36% 32%

Other 24%

Reuse cost

FORTRAN 20% of new

Ada 30% of new

Software size estimate growth

Low reuse 40%

High reuse 20%

*High reuse = >70% reuse

Source: Cost and Schedule Estimation Study Report, 1993

SEL-94-005 26

5.2 Assessing

After establishing a baseline of process, product, and
environment characteristics and determining
organizational goals, the next step in applying the
SEL paradigm is to assess the value of any process
change. In the SEL, these assessments are called
“experiments,” and each project that is developed in
the production environment is viewed as an
experiment. Some of the studies are meant only to
establish models of process or product, while other
experiments are designed to evaluate the impact that a
significant process change may have on the local
software business—both process and product. Some
of the experiments do not make overt changes to the
established development process in the SEL, but are
monitored mainly to establish the baseline
understanding of the process. Additionally, some
technologies require multiple projects to be
completed before the impact of the change can be fully
understood and before recommendations can be made
for tailoring the process for local use.

The structure of the SEL, as a partnership of GSFC,
CSC, and the University of Maryland, has permitted
a wide variety of experiments to be conducted,
maximizing the skills and resources of each of the
contributing organizations. Experiments have ranged
across numerous technologies, from minor process
change (e.g., adding code-reading techniques to
measure resulting error rates) to major process change
(e.g., object-oriented design, Cleanroom, Ada).
Through the experimentation process, the SEL has
gained broad insight into the impacts of these
technologies and processes and has reported
extensively on its findings. Some representative
studies are discussed in the paragraphs to follow.
They include assessments of

• Design approaches

• Testing techniques

• Cleanroom methodology

• Ada/OOD

• Independent verification and validation (IV&V)

5.2.1 Studies of Design Approaches

Some studies require only an understanding of
the current development environment. These
are low-impact studies that can be undertaken
with little risk to projects under development.

The following design study is one such
experiment.

In 1985, several experiments were conducted to
determine the value of various design characteristics
on the quality of the end product. This particular
study used available information already being
captured from development projects; there was no
need to retrain the development personnel in
particular design techniques. The goal was to
determine if the “strength and coupling” criteria
described by Constantine and Meyers (Reference 12)
could be used as a predictive metric to determine the
reliability of software.

A set of 453 software modules was selected from 9
completed projects for which detailed measurement
information existed. The measures included design
characteristics, number of defects found in the
modules, and module size. This study was described
in detail in a paper presented at the International
Conference on Software Engineering (Reference 13).

Strength was measured by the number of functions
performed by an individual module, as determined by
the authoring programmer. The 453 modules were
classified in the following way:

• 90 modules were of low strength and averaged
77 executable statements.

• 176 modules were of medium strength and
averaged 60 executable statements.

• 187 modules were of high strength and averaged
48 executable statements.

As a control, module size was also used. Small
modules had up to 31 executable statements;
medium-sized modules had up to 64 executable
statements; and large modules had more than 64
executable statements. Error rates were classified as
low (0 errors/KLOC), medium (≤ 3 errors/KLOC),
and high (> 3 errors/KLOC).

In analyzing error rates for these modules, strength
proved an important criterion for determining error
rates (see Figure 9) and proved more effective than
simply using size as a predictor for defects. For
example, 44 percent of the low-strength modules had
high error rates; for high-strength modules, error rates
ranged from 44 percent to only 20 percent. On the
other hand, using size as a predictor of error, 27
percent of large modules were error prone while 36

27 SEL-94-005

percent of small modules were error prone, indicating
that module size has little effect on error ratio.

Using all of the data available for the study, the
SEL’s baseline understanding for strength became:

• Good programmers tend to write high-strength
modules.

• Good programmers tend not to show any
preference for particular module size.

• Overall, high-strength modules have a lower
fault rate and cost less than low-strength
modules.

• Fault rate is not directly related to module size.

5.2.2 Studies of Testing

Some studies are best carried out in small
controlled environments. Using the university
environment as an initial testing laboratory is
useful for these studies. After validating the
results in the university environment, the
concept can be applied in an operational
setting. The following testing experiment is an
example of that approach.

Reliability of the software produced is of continuing
concern to the SEL. The goal of one study was to
evaluate several testing techniques in order to
determine their effectiveness in discovering errors.
The techniques evaluated in this experiment were

• Code-reading of the source program by
programmers other than the authors.

• Functional (i.e., black box) testing of the source
program to the specifications (i.e., in-out
behavior) of the program.

• Structural (i.e., white box) testing by
developing test cases that execute specific
statement sequences in the program.

Initially, a study was performed at the University of
Maryland using 42 advanced software engineering
students. Based upon positive results of this initial
study, 32 programmers from NASA and CSC were
recruited. All knew all three techniques, but were
most familiar with the functional testing approach
generally used at NASA. Three FORTRAN
programs were chosen (ranging from 48 to 144
executable statements containing a total of 28 faults).
All 32 programmers evaluated the three programs
using a different testing technique on each program.

Zero
50%

Medium
30%

High
20%

HIGH-STRENGTH MODULES

Zero
36%

High
35%

Medium
28%

MEDIUM-STRENGTH MODULES

Medium
38%

High
44%

Zero
18%

LOW-STRENGTH MODULES

High = >- 3 errors/KSLOC
Medium = < 3 errors/KSLOC

Figure 9. Fault Rate for Classes of
Module Strength

The main results of this study can be summarized as
follows:

SEL-94-005 28

• Code reading was more effective at discovering
errors than was functional testing, and functional
testing was more effective than structural testing
(See Figure 10).

• Code reading was more cost effective than either
functional testing or structural testing in number
of errors found per unit of time (See Figure 11).
Structural testing and functional testing had
about the same costs.

The study also produced some interesting results
concerning programmer expertise and the discovery of
faults. Space does not permit a full explanation here
(see Reference 14 for further details), but the results
can be summarized as follows:

• The FORTRAN program built around abstract
data types had the highest error discovery rate.

This was an early indicator of the value of
OOD.

• More experienced programmers found a greater
percentage of the faults than less experienced
programmers.

• Code reading and functional testing found more
omission and control faults than structural
testing. Code reading found more interface
faults than the other two techniques.

This study, besides providing an assessment of the
value of each of the testing techniques, adds to our
understanding of the underlying baseline technology
for later experiments.

Reading

5.1

Functional

4.5

Structural

3.3

NUMBER OF FAULTS DETECTED

• Code reading uncovered more errors than other methods;
functional testing uncovered more errors than structural testing:
(α < .005).

• While different quantities of faults were detected in each
program, the percentage of faults detected per program was the
same.

• Advanced students uncovered more faults than other students (α
< .005); intermediate students uncovered the same amount of
faults as the junior students did.

• Percent faults uncovered correlates with percent felt by tester to
have been uncovered: R = .57 (α < .001).

Figure 10. Fault Detection Rate by Testing Method

29 SEL-94-005

Functional

1.8

Reading

3.3

Structural

1.8

COST-EFFECTIVENESS (NUMBER OF FAULTS DETECTED/EFFORT)

• Code reading was more cost-effective than the other methods [(α < .005), est + 1.5(4)].

• There was a different overall detection rate for one program.

• Techniques did not differ in total detection time.

Figure 11. Cost of Fault Detection by Testing Method

5.2.3 Studies with Cleanroom

The following study of Cleanroom software
development is an example of the use of pilot
studies of new processes that pose great risks
to the development organization. In this case,
the method was studied for several years at the
University of Maryland before being testing in
the SEL operational environment.

Reliability and defect rates have always been
important components of understanding the
environment. The Cleanroom technique, developed
by Harlan Mills of IBM, proposed to radically alter
how programs are developed in order to affect these
rates. The SEL looked at Cleanroom as another
process that might significantly improve their
development process. The SEL pursued it because
results of the testing study and an earlier
environment/tools study pointed to techniques that
strengthen discipline as high-leverage candidates.

The idea behind Cleanroom is relatively simple.
After a programmer implements a function, the
programmer must verify that the function meets its

specification, rather than relying on unit testing to
show that it apparently works. Cleanroom, then, has
the following attributes:

• Coding takes longer than traditional
development because the verification step must
be added. Programmers must truly understand
their programs in order to verify the functions.

• Function understanding and verification results
in significantly fewer errors, which results in
much less system test—an expensive part of
development.

• Overall result is lower cost and improved
reliability.

Since 1988, several projects have been developed in
the SEL using the Cleanroom methodology. To pre-
pare developers for using the Cleanroom technique, a
series of training courses was given. A pilot project
was undertaken which proved to be very successful.
Time to understand the method (from training until
the start of the second Cleanroom project) was ap-
proximately 26 months. Two follow-on Cleanroom

SEL-94-005 30

projects were undertaken. A smaller in-house
development was very successful, but a larger
contracted project was not successful. It was not clear
whether problems on the larger project were due to
scaling up of Cleanroom to larger tasks or to a lack of
training and motivation of the development team on
this project. Because of the differences that
Cleanroom imposes on the development process, a
fourth Cleanroom project is now underway for
evaluation before declaring the technique
“operational.”

Compared to the SEL baseline process, it was clear
that the Cleanroom development process was different
(Figure 12). Design time and code reading grew
significantly, while code writing and testing times all
dropped. Defect rates improved (Figure 13) although
productivity remained about the same using this new
technology. The results of these studies are reported
in more detail in Reference 15.

5.2.4 Studies with Ada and OOD

Some studies impose a great risk on the
development organization. In such cases,
experiments must be carefully controlled. The
SEL evaluation of Ada was one such study.
This experiment also shows the difficulty of
trying to isolate single processes for
evaluation.

FORTRAN had always been the preferred program-
ming language within NASA, but during the mid-
1980s there was considerable interest in whether Ada
should become their “language of choice.” The SEL
had a baseline understanding of the FORTRAN de-
velopment environment, but needed to develop a cor-
responding baseline for Ada. A controlled exper-
iment was designed where the same onboard com-
puter simulator would be developed in both Ada and
FORTRAN in order to compare the two languages.

TYPICAL SEL
EFFORT DISTRIBUTION SEL CLEANROOM EFFORT DISTRIBUTION

Other
22%

Test
27%

Design
33%

Writing
48%

Reading
52%

Code
18%

Other
26%

Design
23%

Test
30% Writing

85%

Reading
15%

Code
21%

• Increased design effort with Cleanroom

• Code writing: SEL baseline: 85%; SEL Cleanroom: 48%

• Code reading: SEL baseline: 15%; SEL Cleanroom: 52%

Figure 12. Results of Cleanroom Experiment

31 SEL-94-005

SEL Baseline

1st Cleanroom

2nd Cleanroom

PRODUCTIVITY (DLOC PER DAY)

26

40

28

20

3rd Cleanroom

ERRORS (PER K DLOC)

7

4.3

3.1

6

In 1984, the GROSS project developed the
operational FORTRAN simulator while a few
months later an independent group, after first
undergoing an intensive training program in the use
of the language, developed the same simulator
(GRODY) using Ada.

The major result from this initial study was an
improved understanding of the requirements used to
specify NASA software. As the Ada simulator was
being designed, it soon became apparent that the
requirements document typically used in flight
dynamics applications contained many functional
design decisions inherent with an assumed use of
FORTRAN. Based upon this finding, requirements
for the simulator were respecified using an object-
oriented approach indicating the use of OOD
technology, data abstraction, and information hiding.
Because of this redesign of the requirements, the SEL
study encompassed both the applicability of Ada in
the FDD and the use of OOD techniques.

The GROSS-GRODY experiment was considered
successful enough to try to use Ada on an actual

mission, so several additional Ada projects were
developed between 1987 and 1990 (see Figure 14).
As the SEL learned about Ada, and the programming
staff became more familiar with the features of the
language, the characteristics of Ada programs began
to change: packages became smaller, use of generics
rose, use of tasking dropped, and there was a greater
use of the Ada typing mechanism (Figure 15).

From these initial Ada studies, the SEL developed a
model of Ada software development as compared to
the traditional FORTRAN baseline:

• First-time use of Ada resulted in a 30 percent
increase in costs.

• In general, line-by-line, Ada code is more
expensive than FORTRAN code.

• Reuse of Ada source code is higher than for
FORTRAN, resulting in a decrease in program
costs for Ada software.

• Error rates were similar to error rates in
FORTRAN.

Figure 13. Assessing Cleanroom Against Goals and Expectations

SEL-94-005 32

1984 1986 1988 1990 1992 1994 1996

GROSS (FORTRAN) 52K

GRODY 128K

GENSIM 100K

GOADA 170K

GOESIM 92K

EUVEDSIM 184K

SWASXTLS 65K

GSSR1 150K

SMEXTELS 61K

POWITS 68K

UARSTELS 68K

FDAS 68K

EUVETELS 66K

Active development effort

Parallel development - Ada and FORTRAN

6 months
training in
OOD/Ada

FASTELS 66K

SOHOTELS 68K

TOMSTELS 55K

• One parallel study completed

• 15 Ada production projects

• All projects provide full SEL data

• Numerous studies completed

Figure 14. SEL Ada/OOT Projects

33 SEL-94-005

0%

20%

40%

60%

80%

85/86 87/88 88/89 90/93

GENERICS

0.0

.02

.04

.06
STRONG TYPE

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

PACKAGE SIZE

85/86 87/88 88/89 90/93

85/86 87/88 88/89 90/93

85/86 87/88 88/89 90/93

TASKING

T
o
ta

l T
a
sk

s
p
e
r

S
ys

te
m

G
e

n
e

ri
c

P
a

ck
 C

o
u

n
t

p
e

r

P
a

ck
 B

o
d

y
C

o
u

n
t

K
S

L
O

C
 p

e
r

P
a
ck

a
g
e

T
o

ta
l T

yp
e

s
p

e
r

S
ta

te
m

e
n

t

Figure 15. Maturing Use of Ada

Some of the attributes in Figure 15 are not unique to
the Ada language but, rather, represent general OOD
features. Given that, the knowledge obtained from
these studies was packaged as the General Object-
Oriented Software Development (Reference 16) for
application on multiple projects in the environment.
The result has been that FORTRAN programs, too,
have greatly improved in their use of object-oriented
techniques and in the reuse of components from
system to system. Figure 16 shows the shortened
schedules that have resulted from increases in reuse as
object-oriented technology is increasingly employed
on flight dynamics software. FORTRAN has

continued to remain a competitive alternative to Ada
as the technology has evolved.

5.2.5 Studies with Independent
Verification and Validation
(IV&V)

Some process changes may not be appropriate
for certain development organizations. The
needs and goals must match the process. The
following evaluation of IV&V was one such
study.

SEL-94-005 34

0

5

10

15

20

25

30
M

O
N

T
H

S

EARLY
(3 projects
1986-1990)

21

RECENT
(3 projects
1991-1994)

13

EARLY
(4 projects
1985-1990)

28

RECENT
(3 projects
1991-1994)

16

ADA FORTRAN
D

e
liv

e
ry

 t
im

e
(M

o
n

th
s)

Figure 16. Reuse Shortened Project Duration

A study conducted in the mid–1980s is representative
of the more formal experimentation process that the
SEL typically uses. Much literature had been
published indicating the value of using IV&V during
the development of large software systems, so the
SEL considered adopting the methodology within the
FDD production environment. However, before
decisions were made as to whether or not IV&V
should become part of the standard process, several
experiments were conducted to assess the cost,
benefits, and compatibility of the technology for the
SEL class of systems.

Two experiments were designed to test IV&V on two
major software development efforts. (These studies
are described in detail in Reference 17.) The goal of
using the technology was to drive software error rates
down, while maintaining a relatively cost-effective
development process. Each project was approxi-
mately 65 KSLOC and was typical of previous SEL
tasks. The IV&V tasks had three full-time program-
mers and each project took approximately 16 months

from design through acceptance. The initial expecta-
tions for these projects were

• Earlier discovery of defects and increased quality
of the operational software.

• Decreases in design flaws, costs of correcting
errors, and system test effort.

• No changes in total defects reported.

The requirements on the IV&V team were

• Verify the requirements and design of the
implemented system.

• Perform separate system testing.

• Validate consistency of the system to its
requirements.

35 SEL-94-005

• Do not debug the programs, but report all
anomalies.

The results of the IV&V study are shown in Figure
17 and are summarized below:

• Productivity dropped due to the increased costs
of performing the IV&V function.

• Errors found before system test were generally
higher than the SEL average, but not
excessively so.

• IV&V did not significantly affect the overall
error rate of SEL software.

• IV&V errors cost about the same to fix as errors
in previous SEL projects.

While IV&V has been proposed in environments
where it is critical to achieve a high degree of
reliability, that situation was not apparent in the SEL
environment. For the class of software that the SEL
develops, IV&V was not deemed to be effective in
improving either the reliability or overall cost of
developing flight dynamics software.

• If errors found are multiplied by a latency factor, IV&V seems more effective.

620

1

2

3

1.2

1.6

2

2.6

2.2

S
ta

ff
 m

o
n
th

s/
K

S
L
O

C

MIN

AVG

MAX

IV&V

64

66

68

70

72

74

76

78

68.4

76.3

74.5
E

rr
o
rs

 f
o
u
n
d
 b

e
fo

re

sy
st

e
m

 t
e
st

in
g
 (

%
)

62.7

MIN

AVG

MAX

IV&V

0.0

0.3

0.6

0.9

1.2

0.68

1

1.1
1.02

R
e
la

tiv
e
 c

o
st

 t
o
 c

o
rr

e
ct

 e
rr

o
rs

MIN

AVG
MAX

IV&V

0

1

2

3

4

1.4

3.3

2.3

E
rr

o
rs

/K
S

L
O

C

MIN

AVG

MAX

IV&V

• If all measures are examined, IV&V may not be appropriate in the environment.

Figure 17. A Look at IV&V Methodology

SEL-94-005 36

5.2.6 Additional Studies

In addition to the studies described, the SEL has
experimented with numerous other technologies
including testing coverage, code-reading techniques,
computer-aided software engineering (CASE)
technology, structured techniques, documentation
approaches, defect causal analysis, reuse approaches,
and functional testing vs. structural testing, as well as
many variations of these methodologies. For a
complete list of SEL reports and publications see the
Annotated Bibliography of SEL Literature (Reference
18).

Probably the most important lesson that has been
derived from the studies is that specific techniques
can help the overall goals of process improvement
when appropriately selected and tailored. However,
the most effective element of the improvement
paradigm is the continuous analysis of the software
business and the continuous expansion of the
understanding of the software process and product.

5.3 Packaging

As the experiments provide additional insight into
the most appropriate techniques, tools, and processes,
results are identified and captured in the form of
“experience packages” which the SEL uses within the
local development organization, and also shares with
outside organizations. The primary products of the
packaging step are standards, tools, and training that
give practical guidance on how to apply the new
techniques in the context of the local process. Here,
the results of the understanding and analysis phases
are captured and packaged for “reuse” by ensuing
projects, so that they become part of the routine
software business. Additionally, the SEL produces
interim packages that are used during experimentation
while tailoring of the subject technology is being
refined for local use.

5.3.1 Interim Packages

Often when the SEL is experimenting with a major
software engineering technology that affects a large
part of the life-cycle, multiple experiments must be
conducted. During these experiments the technology
is tailored iteratively to determine its most effective
use in the local environment. In these cases,
experience from the completed experiments is
distilled to produce a custom-tailored process for the
next experiment. For example, the results of the
initial experiment with the Cleanroom methodology

led to the generation of the Software Engineering
Laboratory Cleanroom Process Model (Reference
19), because the technology radically affected the
project organization and the distribution of life-cycle
activities. This process was applied on subsequent
Cleanroom experiments, and became a standard after
successful use.

Sometimes interim packages fill a gap when a
technology has not matured sufficiently for direct
application locally. For example, when the SEL
could not find an object-oriented approach that
addressed the full life cycle, SEL analysts developed
the General Object-Oriented Development (GOOD)
Methodology (Reference 16) for use on the early Ada
experiments. They also developed an Ada style
guide to augment industry standards. Typically,
interim packages are integrated into the next release of
the baseline standards once their effectiveness is
confirmed on a successful experiment. In some cases,
however, the interim packages are dropped after
experimentation because an acceptable industry-wide
standard becomes available, as was the case with the
Ada Style Guide.

5.3.2 Technology Reports

For each study conducted, the SEL analysts generate
a technology report of results and conclusions. The
reports may be papers for professional conferences,
internal reports, or technical reports. Typically, a
final technology assessment report is produced at the
end of the experimentation phase, summarizing the
SEL’s experience with a particular technology.
These reports have two purposes: first, to archive the
experience and, secondly, to share the SEL’s
experience with other organizations. These
publications are available to the public at no charge
and are used as the foundation for extending studies
within the SEL. See Reference 18 for a complete list
of SEL-published and SEL-related literature.

In addition to sharing its findings as to the
improvements it has witnessed in flight dynamics
software development and what techniques have or
have not made an impact, the SEL is equally
committed to sharing the process improvement
paradigm it has forged, and all of the lessons it has
learned along the way. Many of these results are
published in software engineering journals and
presented at major international conferences. In
addition, the SEL has packaged its process
improvement experience (methods) in the form of
guidebooks, such as the Software Measurement

37 SEL-94-005

Guidebook, that are designed to be used outside, as
well as inside, the SEL.

To facilitate the sharing of software engineering
experiences among practitioners, the SEL sponsors an
annual Software Engineering Workshop, with paper
sessions, panels, and tutorials, that draws an audience
of over 400 software engineering practitioners from
around the world. The SEL regularly presents its
latest advances in software process improvement
methods and results from its ongoing experiments at
this conference, which has been rated as the best
conference for software practitioners.

5.3.3 Standards, Tools, and Training

Although the technology reports are valuable, the full
value of the process analysis is felt when
modifications and enhancements are made to the
instruments that actually guide the way the
development/maintenance organization carries out its
business. These include standards, tools, and
training classes.

Standards

The SEL development organization uses a standard
set of policies that is updated on a periodic basis to
reflect new experimentation results. It comprises a
set of guidebooks that describe the SEL’s baseline
methodology and several guidebooks that define
major tailoring instances of the baseline process.

Baseline Standards:

• Manager’s Handbook for Software
Development (Reference 20)—presents the
process that the managers use on flight
dynamics systems. This handbook contains the
models, guidelines, and acceptable processes
expected to be applied on each of the
development efforts. It provides specific
guidance for using planning and performance
models to successfully manage software
engineering projects.

• Recommended Approach to Software
Development (Reference 21)—presents
guidelines and standards for developing software
in the flight dynamics environment. It is
intended for developers and technical managers
of software development projects. It describes
methods and practices for each phase of a
software development life cycle including key

activities, products, measures, methods, and
tools.

• Operational Software Maintenance
Procedures—presents the procedures for correct-
ing, adapting, and enhancing operational flight
dynamics software.

• Cost and Schedule Estimation Study Report
(Reference 22)—presents planning models for
cost and schedule estimation and the analysis of
empirical data on which they are based. The
planning parameters are built into planning
spreadsheet tools for use by project managers
and are updated yearly based on ongoing
analysis.

• Data Collection Procedures for the SEL
Database (Reference 11)—presents the detailed
procedures and mechanisms for collecting
software measurements. It contains instructions
to the developers regarding the content,
frequency, and format of the data to be provided.

Tailored Standards:

• Ada Developer’s Supplement to the
Recommended Approach—presents a collection
of guidelines for programmers and managers
who are developing flight dynamics software in
Ada. It is intended to be used in conjunction
with the Recommended Approach to Software
Development. It provides additional detail on
topics such as reuse and object-oriented analysis
and design.

• C Style Guide—presents the recommended
practices and style for programmers using the C
language in the flight dynamics environment.
The guidelines are based on generally
recommended software engineering techniques,
industry resources, and local convention. It
offers preferred solutions to C programming
issues and illustrates through examples of C
code.

• Cleanroom Process Model—presents guidelines
for using the Cleanroom methodology in the
flight dynamics environment. It describes the
Cleanroom life-cycle model and the specific
activities performed in each life-cycle phase. It
also addresses pertinent managerial issues and
highlights the key differences and similarities of

SEL-94-005 38

the SEL Cleanroom process and the standard
development approach.

The SEL has evolved its approach to standards over
the years. The SEL has found that the baseline
process is best presented at a medium level of detail;
it is more important to communicate the rationale
and guidance for applying the methods on projects
rather than providing detailed procedures for them.
This allows the detailed procedures to evolve as
improvements are made and specific project needs
change, without requiring waivers or continual
updates to the formal standards. The SEL typically
updates its baseline standards every 5 years.

The SEL has also discovered that a user-friendly
format is important to creating standards that are
actually used and consulted. The SEL guidebooks
feature graphics to illustrate concepts and are designed
to make information easy to find. They are also
intended to be used primarily as references rather than
one-time reading.

However, most important is the process by which the
SEL gathers the information and ensures that the
standards reflect the actual process. In the early
stages of packaging standards, developers,
maintainers, testers, and managers are interviewed to
gather new and updated information. Facilitated
workshops are then used to develop consensus on the
process content. This information is further validated
by analyzing empirical data. Then a small team of
packagers with excellent communication skills is
tasked with developing the final package.

Tools

An important packaging concept is the infusion of
technology in the form of support tools for use by
project personnel. The SEL developed a project
management tool called the Software Management
Environment (SME). SME provides project
managers access to the SEL data base of previous
project data and access to the baseline set of SEL
process models. Using the SME, a manager can, for
example, compare the growth rate of source programs
or the growth rate of errors, or, using data from
similar projects in the data base, the manager can
predict future activities on the current project. (For
more details on the SME, see Reference 23.) Tools
such as SME help institutionalize the packaging of

the SEL process, because they do not require
operational personnel to know all of the details of
each model in order to use them to gain insight into
their software projects.

The SEL also provides tools to automate parts of the
software measurement process. The SEL developed
an automated tool for developers to use to complete
data collection forms that require simple transcription
(e.g., computer usage and component attributes)
rather than thoughtful completion (e.g., change
reports and effort allocation).

Training

As part of the packaging process, the SEL has
developed a training program, which is outlined in a
detailed training plan (Reference 24). The program
consists of a standard set of courses designed to
provide all of the developers, managers, analysts, and
data base support staff with the information needed to
function effectively in the FDD environment.
Courses cover the SEL software process improvement
concepts, software development methodology,
software management approaches, standards, and
organizational guidelines. This core set of courses
reflects the experimental results, the process
improvement approach and, in general, all of the
experiences of the SEL. These core courses are
continually updated to reflect new and changing
experiments within the SEL.

In addition to the core courses, the SEL staff provides
training in any technology, methodology, or process
that is planned as part of a SEL study when the
technology or process is unfamiliar to the
development teams. For instance, extensive training
was provided in Ada and OOT before any attempt
was made to apply these technologies on
development projects. Other training has included
Cleanroom, inspections, and CASE. If the SEL staff
does not possess the skills or knowledge to teach the
courses, appropriate instructors may be recruited from
elsewhere in the organization or outside vendors may
be contracted to provide the training.

All SEL staff (managers, developers/maintainers,
analysts, and data base support) are required to
participate in the core set of training classes, while
the staff from specific development experiments attend
specialized training addressing the processes under
study.

39 SEL-94-005

Section 6. The SEL Impact

The SEL has invested extensive time, energy, and
resources in its efforts to better understand software
process and its impact on software products. SEL
studies have involved over 120 projects and perhaps
as many software technologies, ranging from
development and management practices (e.g.,
structured technologies), to automation aids (e.g.,
CASE and development tools), to technologies that
affect the full life cycle (e.g., Ada, OOD).

6.1 Cost of Change

The benefits of the process improvement efforts are
well substantiated by looking at the measures of
software cost, error rates, and cycle time—all goals of
the organization as change was being implemented.
Not only has the SEL traced the detailed software
measures throughout its 17-year lifetime, but it also
has tracked quite closely expenditures for process
change efforts. The SEL investment in process
change activities can be divided into three significant
areas:

• Project overhead

• Data handling, archiving, and technical support

• Process analysis

The total investment that the SEL has made in the
improvement effort has been approximately 11 percent
of the total software development cost in the FDD.
Project overhead represents costs incurred due to
developers attending training (in new processes),
completing data collection forms, participating in
interviews, and providing detailed additional
information requested by the analysts. This overhead
for data collection and process change is extremely
small; it is now nearly impossible to measure except
in the cases of very large process changes, such as
using a new language (longer training, meetings,
etc.). For projects participating in the routine process
improvement efforts, the impact is approximately 1
percent of the total software cost. A successful
process improvement program does not require a
large perturbation or cost to the development
organization.

Data archiving and repository activities require a
larger investment. Not only must measures be
collected from the developers, but there must be a

smooth process of data quality assurance, archiving,
and reporting. This function of the SEL has cost
approximately 3 percent of the total development
budget. This figure includes purchase and design of
data base management systems and distribution of
SEL literature as well.

The analysis activity has been the most costly of all
the expenditures in the SEL, averaging about
7 percent of development budgets. The responsibili-
ties of the analysts include setting goals, defining
experiments, interpreting measurement data, training
the development/maintenance staff, developing stan-
dards, and tailoring processes for particular needs.
The analysts must provide refined processes to the
development organization along with rationale of why
one process is more appropriate than another. They
must design and then provide any required training to
the development organization. Investment in
analysis is a variable expense, depending on the
experiments and technologies being researched and
the amount of improvement payoff the organization is
seeking at any time.

Over time, the SEL investment in process
improvement has averaged 7 percent in research and
analysis and 3–4 percent in data collection and data
base support combined. While these numbers vary
depending on the complexity of experimentation and
the scope of the technologies being studied at any
time, a local rule of thumb is to maintain data
collection and data base support at no more than half
of the investment in research and analysis.

6.2 Impact on Product

Individual studies often resulted in specific
improvements on the project being studied, but many
experiments resulted in no measurable improvements
or even negative impact on the end product. The
major goals of the SEL from the beginning called for
significant overall improvement in three product
measures:

• Decrease in the defect rate of delivered software.

• Decrease in the cost of software to support
similar missions.

SEL-94-005 40

• Decrease in the average cycle time to produce
mission support software.

The additional measure of predictability also has been
an ongoing goal, but this is a more subjective
measure that is more difficult to quantify. Detailed
measures from the projects allowed the SEL staff to
observe trends in the key measures over time and to
analyze specific changes by comparing similar classes
of software supporting similar classes of projects. In
addition to the information that characterizes the
measures identified above, additional data collected
on all projects support more extensive comparisons of
other product attributes.

To determine the general impact of the sustained
efforts of the SEL as measured against its major
goals, comparisons are routinely made between
groups of projects developed at different times. For
example, between 1985 and 1989 (the early baseline)
and a group of similar projects developed between
1990 and 1993 (the current baseline). Projects were
grouped based on size, mission complexity, mission
characteristics, language, and platform. Similar types
of comparisons have been made over longer periods of

time as well as comparisons made on smaller sets of
projects in varying classes. The goal of these
analyses is to assess the impact of process change on
product characteristics. This was measured as
improvement in the end product in the three key
measures: defects, cost, and cycle time.

The early baseline comprises eight projects
completed between 1985 and 1989 (see Table 5).
These projects were all ground-based attitude
determination and simulation systems developed on
large IBM mainframe computers ranging in size from
50–150 KSLOC. All of these projects were
considered successful in that they met mission dates
and requirements within acceptable cost, and all of
these projects applied some variation on the standard
software process as part of SEL experimentation. The
current SEL baseline comprises seven projects
completed between 1990-1993 (see Table 6). The
analysis focused on a comparison of defect rates, cost,
cycle time, and levels of reuse. Additionally, the
reuse levels were studied carefully with the full
expectation that there would be a correlation between
higher reuse and lower cost and defect rates.

Table 5. Early SEL Baseline (1985-1989)

PROJECT

(No. & name)

%

REUSE

COST*

(Staff mos)

RELIABILITY

(Error/KDLOC)

1. GROAGSS 14 381 4.42

2. COBEAGSS 12 348 5.22

3. GOESAGSS 12 261 5.18

4. UARSAGSS 10 675 2.81

5. GROSIM 18 79 8.91

6. COBSIM 11 39 4.45

7. GOESIM 29 96 1.72

8. UARSTELS 35 80 2.96

* Mission cost = cost of telemetry simulator + cost of AGSS (GRO =
projects 1+5, COBE = 2+6, GOES = 3+7, UARS = 4+8).

41 SEL-94-005

Table 6. Current SEL Baseline (1990-1993)

PROJECT
(No. & name)

%
REUSE

COST 1

(Staff mos)

RELIABILITY
(Error/KDLOC)

1. EUVEAGSS 81 155 1.22

2. SAMPEX 83 77 .76

3. WINDPOLR 18 476 n/a 2

4. EUVETELS 96 36 .41

5. SAMPEXTS 95 21 .48

6. POWITS 69 77 2.39

7. TOMSTELS 97 n/a 3 .23

8. FASTELS 92 n/a 3 .69

1 Mission cost = cost of telemetry simulator + cost of AGSS (GRO =
projects 1+5, COBE = 2+6, GOES = 3+7, UARS = 4+8).

2 Excluded since it used the Cleanroom development methodology
where errors are counted differently.

3 Total mission cost for TOMS and FAST cannot be calculated since
AGSSs are incomplete (they are not included in the cost baseline).

The early baseline projects had a development defect
rate that ranged from a low of 1.7 errors per KSLOC
to a high of 8.9 errors per KSLOC with the average
rate being 4.5 defects per KSLOC. The current
baseline projects had a defect rate ranging from a low
of 0.2 to 2.4 errors per KSLOC with the average
being 1 error per KSLOC. This reliability measure
showed a decrease in the defect rate of approximately
75 percent over the 8-year period (see Figure 18).

Software cost was also compared between the two
baselines. The mission cost is defined as the total
cost of all the flight dynamics software required to
support the flight project. An examination of the
selected missions from the two baselines revealed that
while the total lines of code produced to support the
specific missions has remained relatively close, the
total mission cost has decreased significantly. The
average mission cost in the early baseline ranged from
a low of 357 staff-months to a high of 755 staff-
months with an average of 490 staff-months. The
current baseline projects had costs ranging from a low
of 98 staff-months to a high of 277 staff-months with

an average of 210 staff-months. Figure 19 shows the
comparison of the cost data. The significant decrease
in cost can be attributed to increases in both
productivity and code reuse (Figure 20). This
comparison shows that the average cost per mission
has decreased by over 50 percent over the 8-year
period.

Through the experimentation and emphasis on the
reuse of software in the SEL, detailed data have been
tracked that characterize the trends in the reuse of
software. Although code reuse represents only one
measure of software reuse, it is one of the more
measurable and more easily understood, so the SEL
uses it to measure reuse in its environment. Code
reuse is defined as the total lines of application code
in components (compilable units) that have been
taken in their entirety from a previously completed
system or application library. Commercial off-the-
shelf products and multiple use of a module within
the same system are not included in the
computations.

SEL-94-005 42

Early
(1985-1989)

Current
(1990-1993)

S
ta

ff
 m

o
n
th

s

Avg = ~ 490

Avg = ~ 210

Low = 357

Low = 98

High = 277

High = 755

0

200

400

600

800

Figure 19. Impact on SEL Products (Cost)

Early
(1985-1989)

Current
(1990-1993)

E
rr

o
rs

/K
L

O
C

 (
d

e
ve

lo
p

e
d

)
Avg = ~4.5

Avg = ~1Low = 1.7

Low = .2

High = 2.4

High = 8.9

0

2

4

6

8

10

Figure 18. Impact on SEL Products (Reliability)

43 SEL-94-005

Current
(1990-1993)

P
e

rc
e

n
t

R
e

u
se

0

20

40

60

80

Early
(1985-1989)

Avg = 20

FORTRAN = 61

100
Ada = 90

Avg = 79

Figure 20. Impact on SEL Products (Reuse)

In addition to examining the changes over recent
years by comparing projects with similar
characteristics, the long-term trends of reliability were
examined for the full set of projects where accurate
error data were available. Approximately 60 flight
dynamics projects had accurate error data over the
same phases of the life cycle. The error rate data were
taken from these projects over the full lifetime of the
SEL and were fit using a simple linear regression
(shown in Figure 21). The data indicated that error
rates decreased from approximately 7.5 errors per
KSLOC to approximately 1 error per KSLOC—an
improvement of over 75 percent.

6.3 Impact on Process

The SEL has reviewed in detail the process changes
that have been tried and adopted over the lifetime of
the improvement program. It would be satisfying to
be able to point to a key technology or methodology
change and to state that it had a direct, measurable
link to a specific product improvement. However, it
is difficult to isolate the impact of any one change in
this environment. But the most significant changes
that have been adopted can be identified by
examining the standards, training programs, and
development approaches that today constitute the

SEL/FDD process. Although specific techniques or
methodologies may have measurable impact on a
class of projects, significant improvement to the
software development process occurs where the
sustained, continuous incorporation of detailed
techniques into higher level organizational processes
effects an overall change in the environment. The
most significant process attributes that distinguish
the current SEL production environment from the
environment of a decade ago include:

• Process change has been infused as a standard
business practice.

All standards and training material now contain
elements of the continuous improvement
approach to experimentation that has been
promoted by the SEL.

• Measurement is now our way of doing
business.

Measurement is no longer treated as an add-on
to development. The measurement activity is
as common a part of the software standards as
documentation. It is expected, applied, and
effective.

SEL-94-005 44

Project Midpoint

E
rr

o
rs

 P
e

r
K

-D
L

O
C

0

2

4

6

8

10

12

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994

ISEEB

WINDDV

DEA

FORTRAN ADA

SEASAT

MAGBIAS

DEDET
GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC

DESIM

COBEDS

GROSS

GRODY

UARSDSI
M

GMASUI

WINDPOPS

GOESAGSS
GOFOR

COBEAGSS
ASP

ADEAS

GROAGSSCOBSIM FDASF

BBXRT

GOADA

UARSTELS UARSAGSS

TONSIBM

POWITS

GOESIM

SAMPEXTS

EUVEAGSS

TOMSTELS
EUVETELS

EUVEDSIM

SAMPEX FASTELS

AEM

GROHUD

IE
E

E
4
0

14

16

Figure 21. Development Error Rates (1977-1994)

• Change is now driven by product and
process, not merely process alone.

As the process improvement program has
matured over the years, an equal concern has
developed for product attributes as well as
process attributes. A set of product goals is
always defined before process change is infused.
Because of this, measures of product are as
important as (and probably more important
than) those of process.

• Change is now bottom-up.

Although process improvement analysts
originally assumed that they could work
independently from the developers, the years
have brought the realization that change must be
guided by development-project experience.
Direct input from developers as well as
measures extracted from development activities
are key factors in change.

• “People-oriented” technologies are empha-
sized rather than automation.

The most effective process changes are those
that leverage the thinking ability of the
developers. These include reviews, inspections,
Cleanroom techniques, management practices,
and independent testing techniques—all of
which are driven by disciplined activities of the
programmers/managers. Automation techniques
have sometimes provided improvement, but
people-driven approaches have had farther
reaching effects.

The improvements in product characteristics
and the changes to the standard process in this
environment illustrate the impact of the FDD’s
investment in the SEL improvement program.
Today, software developers in this organization
are building better software more efficiently
using many techniques and methods considered
experimental only a few years ago. Their
progress has been facilitated throughout by the
SEL, whose focus on defining organizational
goals, expanding domain understanding, and
judiciously applying new technology has en-
abled the FDD to maximize the lessons learned
from local experience.

45 SEL-94-005

Appendix A - Sample SEL Experiment Plan

SEL Representative Study Plan for SOHOTELS

October 11, 1993

Project Description

The Solar and Heliospheric Observatory Telemetry Simulator (SOHOTELS) software development project will
provide simulated telemetry and engineering data for use in testing the SOHO Attitude Ground Support System
(AGSS). SOHOTELS is being developed by a team of four GSFC personnel in Ada on the STL VAX 8820. The
project is reusing design, code, and data files from several previous projects but primarily from the Solar,
Anomalous, and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

The SOHOTELS team held a combined preliminary design review (PDR) and critical design review (CDR) in April
1993. In their detailed design document, the SOHOTELS team stated the following goals for the development
effort:

• To maximize reuse of existing code

• Where reuse is not possible, to develop code that will be as reusable as possible

• To make sure performance does not suffer when code is reused

Key Facts

SOHOTELS is being implemented in three builds so that it can be used to generate data for the early phases of the
AGSS (which is a Cleanroom project). Build development and independent acceptance testing are being conducted
in parallel. At present, the test team has finished testing SOHOTELS Build 1. The development team expects to
complete Build 2 and deliver it to the independent test team by the end of the week.

SOHOTELS consists of six subsystems. As of June, the estimated total number of components was 435, of which
396 (91 percent) have currently been completed. Total SLOC for SOHOTELS was estimated at 67.6 KSLOC, with
46.6 KSLOC of code to be reused verbatim and 15.7 KSLOC to be reused with modifications. As of September 13,
1993, there were 65.4 KSLOC in the SOHOTELS system, or 97 percent of the estimated total.

The SOHOTELS task leader is currently re-estimating the size of the system because SOHOTELS will be more
complex than was originally predicted. The new estimates will include SLOC for the schema files that are being
developed.

The phase start dates for SOHOTELS are

September 9, 1992 Requirements Definition

October 3, 1992 Design

May 1, 1993 Code and Unit Test

June 26, 1993 Acceptance Test

May 7, 1993 Cleanup

SEL-94-005 46

Goals of the Study

The study goals for SOHOTELS are

• To validate the SEL’s recommended tailoring of the development life cycle for high-reuse Ada projects

• To refine SEL models of high-reuse software development projects in Ada, specifically

- Effort (per DLOC, by phase and by activity)

- Schedule (duration for telemetry simulators and by phase)

- Errors (number per KSLOC/DLOC)

- Classes of errors (e.g., initialization errors, data errors)

- Growth in schedule estimates and size estimates (from initial estimates to completion and from
PDR/CDR to completion)

Approach

The following steps will be taken to accomplish the study goals:

• Understand which of the standard development processes are being followed and which have been tailored for
the SOHOTELS project. Ensure that information is entered into the SEL data base that will allow
SOHOTELS data to be correctly interpreted in light of this tailoring.

• Analyze project/build characteristics, effort and schedule estimates, effort and schedule actuals, and error data on
a monthly basis while development is ongoing.

• At project completion, plot the effort, schedule, error rate, and estimate data. Compare these plots with current
SEL models and with plots from other high-reuse projects in Ada. Compare and contrast the error-class data
with data from FORTRAN projects, from Ada projects with low reuse, and from other high-reuse Ada projects.

Data Collection

To address these study goals, the following standard set of SEL data for Ada projects will be collected:

• Size, effort, and schedule estimates (Project Estimates Forms)

• Weekly development effort (Personnel Resources Forms)

• Growth data (Component Origination Forms and SEL librarians)

• Change and error data (Change Report Forms and SEL librarians)

