
SOFTWARE ENGINEERING LABORATORY SERIES SEL-95-001

IMPACT OF ADA AND
OBJECT-ORIENTED DESIGN IN

THE FLIGHT DYNAMICS DIVISION AT
GODDARD SPACE FLIGHT CENTER

MARCH 1995

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

iii SEL-95-001

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) and created to investigate the effectiveness of software
engineering technologies when applied to the development of applications software. The SEL was created in 1976
and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to
measure the effect of various methodologies, tools, and models on the process; and (3) to identify and then to apply
successful development practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes this document.

The major contributors to this document are

Sharon Waligora, Computer Sciences Corporation

John Bailey, Software Metrics, Inc.

Mike Stark, NASA/Goddard Space Flight Center

The SEL is accessible on the World Wide Web at

http://groucho.gsfc.nasa.gov/Code_550/SEL_hp.html

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

v SEL-95-001

Contents

Foreword.. iii

Executive Summary.. ix

Section 1. Introduction .. 1

1.1 Background .. 1

1.2 Environment ... 1

1.2.1 Flight Dynamics Division .. 1

1.2.2 Software Engineering Laboratory and Process Improvement .. 2

1.2.3 Independent Assessment.. 3

1.3 Document Organization... 3

Section 2. Experience With Ada in the FDD.. 5

2.1 Goals and Expectations ... 5

2.2 Project Experience ... 7

2.2.1 Dynamics Simulators.. 7

2.2.2 Telemetry Simulators.. 11

2.3 Research and Development Systems .. 15

2.3.1 Embedded Systems .. 15

2.3.2 Reusable Assets Framework and Components ... 16

2.4 Studies... 17

2.4.1 GRODY/GROSS Parallel Development Experiment (1985–1989)... 17

2.4.2 Reuse Study (1990–1991).. 18

2.4.3 Portability Study (1989–1990).. 19

2.4.4 Performance Study (1990–1991)... 19

2.4.5 Ada Size Study (1991–1992).. 19

2.5 Training ... 20

2.5.1 Initial Training .. 20

2.5.2 Project-Specific Training... 21

2.5.3 Institutional Training .. 21

Section 3. Quantitative Analysis.. 23

3.1 Project Data .. 23

3.1.1 Size Measures ... 23

3.1.2 Language Feature Usage.. 24

3.2 Reuse... 25

3.2.1 Different Reuse Methods... 26

3.2.2 Adjusting FORTRAN Measures to Compensate for Different Reuse Methods............................ 27

3.2.3 Software Size Differences Due to Generalization Approach and Language................................ 28

SEL-95-001 vi

3.2.4 Impact of Different Reusable Software Management Approaches.. 29

3.2.5 Computing the Productivity of Reuse... 29

3.3 Process Evolution... 30

3.4 Cost Reduction.. 33

3.5 Schedule Compression.. 35

3.6 Reliability... 36

3.7 Performance.. 36

3.8 Summary of the Comparisons... 38

Section 4. Qualitative Analysis ... 39

4.1 Vendor Tools and Support ... 39

4.2 Ada Perspectives Within the FDD ... 40

4.2.1 User Perspective .. 40

4.2.2 Developers’ Perspective .. 41

4.2.3 Management Perspective ... 43

4.3 Net Result... 45

Section 5. Conclusions and Recommendations... 47

Key Findings... 47

Technology Transfer Lessons Learned ... 49

Recommendations.. 50

Note to Readers Outside the FDD.. 51

Appendix A. Project Data .. 53

Appendix B. Detailed Reuse Analysis .. 63

Appendix C. Data Collection Instruments ... 67

Acronyms.. 71

References... 73

Standard Bibliography of SEL Literature ... 75

vii SEL-95-001

Illustrations

Figures
1 SEL Process Improvement Paradigm ... 2

2 FDD Ada Activity Timeline ... 6

3 FDD Ada Goals and Experience.. 7

4 Maturing Use of Ada at the FDD... 24

5 Verbatim Reuse Percentages for Ada Projects.. 25

6 Verbatim Reuse Percentages for FORTRAN Projects.. 26

7 Activity Distribution: All Ada vs. all FORTRAN Projects... 30

8 Activity Distribution for Ada Projects .. 31

9 Activity Distribution for FORTRAN Projects .. 32

10 Average Effort to Deliver a Statement .. 33

11 Average Effort to Deliver Similar Functionality ... 34

12 Average Project Duration... 35

13 Error Densities on Early and Recent Ada and FORTRAN Projects... 36

14 Performance Times of Ada and FORTRAN Simulators ... 37

15 Language Preference for FDD Systems .. 41

16 Distribution of Developers’ Ada Preference Scores... 44

17 Growth of FDD Ada Software .. 45

Tables

1 Ada Project/Study Goals and Experience ... 8

2 Dynamics Simulator Project Data... 9

3 Telemetry Simulator Project Data... 11

4 Ada Efficiency Guidelines .. 20

5 Ada vs. FORTRAN Reuse Methods.. 27

6 FORTRAN and Ada Development Productivities.. 29

7 FORTRAN and Ada Development Productivities Including Black-Box Reuse .. 30

8 Ada Survey Responses for Developers Expressing Opinions ... 42

ix SEL-95-001

Executive Summary

Beginning in 1985, the Flight Dynamics Division (FDD) at NASA’s Goddard Space Flight Center began
investigating Ada and, shortly thereafter, object-oriented design (OOD) as means of improving its products and
reducing development costs for its satellite flight dynamics software systems. The FDD’s intention was to become
an Ada development “shop” within 10 years. This decision was based on widespread opinion in the software
engineering community, particularly among U.S. Government agencies, that Ada was “more than just another
programming language,” that this language, in fact, represented a significant advance in software engineering
technology that would lead to better products and a more disciplined practice of software engineering. Ada had
been designed by the Department of Defense with the goal of providing a common language that would support the
portability of programs, tools, and personnel across many projects. Another goal was to provide, in Ada, a tool
beneficial for large-system development and long-term maintenance.

The Software Engineering Laboratory (SEL), which facilitates software process improvement within the FDD
through an organized measurement, research, and technology infusion program, selected Ada as one of several
software engineering technologies available at that time that had potential for significantly improving the local
software process and products. During its initial experimentation with the language, the SEL chose to combine Ada
with OOD to extend its impact throughout the full software development life cycle and to ensure that new design
approaches would be explored.

The FDD’s investigation of Ada/OOD was conducted as a series of experimental projects and deliverable Ada
systems. Ada experiments and projects were assigned specific goals addressing different aspects of software
development, such as design concepts, software reuse, cost and schedule adherence, and system performance.
Progress toward these goals was guided and monitored by the SEL, and documented in study reports summarizing
the results and lessons learned from each of the Ada experiences. Project characteristic data for the Ada systems
were collected and stored in the SEL data base along with data for earlier FDD projects (before 1985) and
concurrent FORTRAN projects (1985–1994).

This report, commissioned by the FDD and the SEL, is the product of an in-depth investigation into the Ada
experience in this organization. Conducted by an outside consultant (Software Metrics, Inc.), this investigation
gathered together the sum of the research and experience described above; quantitative data (system size, effort,
errors, project duration, percent reuse, and performance) for all projects, both FORTRAN and Ada, active between
1985–1994; and the opinions of FDD personnel, both those directly involved in the transition and those simply
present in the environment during the period. These materials have been analyzed with a focus on the evolution of
local products and processes since Ada/OOD have been in use. Significant improvements in product characteristics
have been documented, as well as notable changes to the software development process. This investigation also
sought and identified the reasons why, 10 years after introducing this technology with an expressed intention of fully
transitioning to it, and after witnessing improvements in product and process, the FDD develops only 15–20% of its
software using Ada.

Although the overall assessment of this technology has shown it to be beneficial, it is unlikely that the FDD will
fully transition to Ada as its language of choice. Chief among the deterrents are the lack of mainframe development
environments and the high cost of viable Ada software development environments for workstations—the two
platforms on which the bulk of the FDD’s systems are built. Furthermore, up until now there has been no
documented reason for the FDD to abandon FORTRAN as its primary implementation language. However, some of
the findings in this report, regarding maintenance and software size, show good reason to move away from
FORTRAN.

The key findings and technology transfer lessons learned from the FDD’s Ada experience are summarized below.
Recommendations based on this assessment are made regarding the future use of Ada in this organization.

SEL-95-001 x

Key Findings

• Use of Ada and OOD in the FDD resulted in:

− Increased software reuse by 300%

− Reduced system cost by 40%

− Shortened cycle time by 25%

− Reduced error rates by 62%

• The experimentation with Ada/OOD served as a catalyst for many of the improvements seen in the FORTRAN
systems during the same period.

• FORTRAN systems applying object-oriented concepts also showed significant improvement in reuse. Like the
Ada projects, higher reuse led to reduced cycle times and lower error rates on the FORTRAN projects.
However, they did not experience similar cost savings; use of Ada resulted in greater cost reductions for
systems with roughly comparable levels of reuse.

• Use of Ada resulted in smaller systems to perform more functionality; while generalization increased the size of
the FORTRAN systems.

• Lack of viable Ada development environments on the FDD’s primary development platform severely hampered
the transition to Ada.

• The high cost of Ada development environments on workstations may deter future use of Ada as the FDD
transitions to open systems.

• The introduction of Ada sparked much controversy within the FDD. At this time, most of the FDD workforce
is lukewarm toward using Ada, with two vocal minorities for and against its continued use. However, most
personnel support the use of object-oriented techniques.

Technology Transfer Lessons Learned

• Technology insertion takes a long time, especially when several technologies are combined or when the
technology affects the full development life cycle and requires a significant amount of retraining.

• Parallel development experiments are an effective way of minimizing the risk of a major new technology to the
organization; however, the project using the new technology must be tightly managed to maximize value and
minimize negative effects.

• First impressions are very important; be careful to understand and set realistic expectations regarding the new
technology for everyone affected.

• Project personnel will focus on and meet the goals set for them at the expense of those not explicitly stated. Be
careful to consider all aspects of the new technology when setting goals for pilot projects, and clearly state all
goals and their relative priority.

• New technology advocates are essential to initiate and sustain the technology transfer process. However, if they
are not sensitive to the needs and concerns of the organization and its developers, they will impede rather than
facilitate the process.

• Initial language training is best accomplished by outside vendors. Local training should focus on how to apply
the language in the local environment.

xi SEL-95-001

Recommendations

• The FDD should continue to use Ada whenever possible. This would include for those systems that reuse
existing Ada code and any other projects (or portions of projects) that are expected to be long-lived and can be
developed and deployed on an Ada-capable platform.

• The FDD should build reusable software in a language that supports object-oriented constructs and consider
using specialized teams of experts to configure the reusable components for each mission. This would likely
improve the efficiency of the reuse process.

• The FDD should investigate lower-cost alternative languages to support object-oriented development on
workstations. However, trade-off analyses should consider the cost of development environments, the
efficiency and quality of software development, and the ease and cost of long-term maintenance for the
languages under consideration.

Note to Readers Outside the FDD

Because the FDD uses a single language and develops small to mid-sized systems with relatively short life spans,
this organization was not able to apply Ada in the context for which it was originally designed. Hence, readers of
this evaluation should bear in mind that this study reports only one experience with this technology. As the findings
suggest, the language offers clear benefits and involves significant investment. The specific influential factors in
any one organization (e.g., software domain, hardware environment, long-term goals) must be considered in any
evaluation of Ada’s applicability and effectiveness.

1 SEL-95-001

Section 1. Introduction

1.1 Background

In the early 1980s, the software engineering
community at large had great hopes and expectations
for the Ada language. Ada was considered to be
more than just another programming language.
Because it embodied several important software
engineering principles and contained features to
ensure good programming practices, its proper use
was expected to lead to advances in the entire
software development process. Furthermore, through
increased reuse, reliability, and visibility of products
developed using Ada, it was expected to reduce costs
and shorten project durations and to lead to better and
more manageable software products. Thus, the Ada
language was perceived as a significant advance in
software engineering that would lead to a more
disciplined software engineering practice throughout
the industry.

The Department of Defense (DoD) developed the
Ada language to help solve its software “crisis” (i.e.,
the exponentially growing amount of software to be
developed and maintained by the agency). The DoD
expected that, as a language that both encouraged and
supported software engineering principles and
practices, Ada would facilitate improved program
quality and maintainability and thereby reduce full
life-cycle software development costs. The DoD also
sought to curtail the proliferation of the many
languages in use on its software systems; its vision
was for Ada to become the standard language,
commonly used across many projects, thus enabling
the portability of software, tools, and personnel.

In 1984, DoD mandated that Ada be used on all of its
new software development projects. Shortly there-
after, other government agencies and software
companies began considering using Ada to develop
large systems that were expected to have long
lifetimes. For example, NASA mandated that Ada be
used on the Space Station Project in 1985, and the
Federal Aviation Agency selected Ada as its
language of choice for its Advanced Automation
System in 1987.

Beginning in 1985, the Flight Dynamics Division
(FDD) at Goddard Space Flight Center (GSFC)
began investigating Ada and, shortly thereafter,
object-oriented design (OOD) as means of improving

its products and reducing development costs for its
satellite flight dynamics software systems. The
FDD’s intention was to become an Ada development
“shop” within 10 years. The Software Engineering
Laboratory (SEL), which facilitates software process
improvement within the FDD through an organized
measurement, research, and technology infusion
program, selected Ada as one of several software
engineering technologies available at that time that
had potential for significantly improving the local
software process and products. During its initial
experimentation with the language, the SEL chose to
combine Ada with OOD to extend its impact
throughout the full software development life cycle
and to ensure that new design approaches would be
explored that would maximize use of Ada features.*

Thus, the FDD, supported by the SEL, began its
“transition” to Ada which, after 10 years, has resulted
in only limited routine use of Ada in one application
domain. The organization faced and overcame many
of the technical challenges typically encountered
when using new technology. However, other aspects
of the technology infusion process were not (or could
not have been) anticipated, such as the degree of
difficulty and psychological factors involved in
infusing such a complex technology, and the shift in
direction that the Ada “market” would take.

1.2 Environment

1.2.1 Flight Dynamics Division

The Flight Dynamics Division spends approximately
$20 million per year developing and maintaining
ground support software for NASA’s scientific
satellites. This software is typically ground-based,
non-embedded, and scientific (algorithmic) in nature.
Applications include spacecraft attitude determina-
tion, control, and simulation; maneuver planning;
orbit determination and control; and mission analysis.
Systems range in size from 30 thousand source lines
of code (KSLOC) to 1 million SLOC and are

*Strictly speaking, Ada 83 is not an object-oriented
language, because it does not support dynamic binding
and inheritance. However, it does support objects, and
OOD methodologies can take full advantage of Ada. Ada
95 more fully supports the object-oriented paradigm.

SEL-95-001 2

typically developed in FORTRAN on IBM main-
frame computers; however, some of the smaller
systems, such as the simulators, are developed on a
VAX minicomputer. The FDD has recently begun to
migrate to a distributed hardware environment using
an open systems architecture.

Currently, the FDD maintains approximately
4.5 million SLOC of operational software. Approxi-
mately 150–200 software engineers develop and
maintain the software, which is used to support up to
five launches per year and ongoing mission support
for 8–15 operational satellites.

In the FDD, hardware and system support software
(operating systems, compilers, and tools) are pro-
vided institutionally. Software is usually developed
and operated on the same hardware. Although this
eliminates the need to port software from the
development machine to the target machine, it
restricts the freedom of the development organization
to choose its development tools and environment.
Because over 75% of the computer resources are
used for spacecraft operational support in this
environment, FDD hardware selection and configura-
tion decisions tend to favor system operations over
development.

1.2.2 Software Engineering
Laboratory and Process
Improvement

In 1977, the FDD joined with its major software
contractor, Computer Sciences Corporation, and the
University of Maryland’s Department of Computer
Science to form the Software Engineering Laboratory
(SEL) with the expressed purpose of improving the
way the FDD develops software.1 Since then, the
SEL has established and matured a software measure-
ment program and developed a three-step process
improvement paradigm that facilitates product-based
process improvement.

The SEL’s process improvement paradigm is shown
in Figure 1. The first and most important step is
understanding how an organization currently does
business and what it values. This is done by
characterizing the products generated and the process
that is used to produce them. In the second step,
assessing, the organization sets goals for improve-
ment, and experiments with process changes, such as
a new technology, that might help achieve its goals.
This is done by introducing a process change on pilot
projects, assessing its impact on the product, and
refining it if necessary before selecting it for use

UNDERSTANDING

ASSESSING

PACKAGING
Make improvements part of your business

• Update standards
• Refine training

TIME

ITERATE

Determine effective improvements

• Determine improvements and set goals
• Measure changed process and product
• Analyze impact of process change on product

Know your software business

• What are my software characteristics?
• What process do we use?
• What are our goals?

Figure 1. SEL Process Improvement Paradigm

3 SEL-95-001

throughout the organization. The final step is
packaging, where the successful new technologies
and procedures are integrated into the organization’s
standards and training program so that all projects
may benefit from the changes.

Within the SEL, a group of researchers, analysts, and
support personnel (separate from FDD software
developers) performs process improvement activities.
They collect and analyze software project measure-
ments to produce models and standards for use by the
projects. They design and monitor experiments with
new technologies and modified procedures to
determine their applicability to the local environment
and refine/tailor them for optimum use in the FDD.

The SEL continually collects data and looks at its
information to build more accurate current models.
As projects and studies are completed, project data
and research results are added to the baseline to
increase its accuracy. In 1985, when the SEL/FDD
began working with Ada, the FDD baseline was
fairly well defined and a standard process had been
established based on best software engineering
practices, which included a well-defined life-cycle
model and a disciplined approach to project
management. A solid measurement program had
provided data for baseline models, including

• Cost models–e.g., productivity, effort profile,
code reuse, cost per change, schedule

• Reliability models–e.g., error rate, error detec-
tion rate, classes of errors (type and source)

• Process models–e.g., effort distributions by
activity and by phase, software component com-
pletion profile

This baseline and the SEL’s established experimenta-
tion and analysis process provided a structure for
assessing the impact of new technologies such as Ada
and OOD in this environment.

1.2.3 Independent Assessment

Since 1985, the FDD has completed 15 projects using
Ada and OOD, while the SEL has conducted a series
of experiments and studies concurrent with those
projects. The SEL has produced many reports and
papers about specific aspects of this work, all of
which reported encouraging results. But today,
nearly a decade later, the FDD still produces 80% of
its software in FORTRAN, despite the initial
expectation of transitioning to Ada and the positive

results on Ada projects. Meanwhile other languages,
such as C and C++, have emerged in the intervening
years as viable alternatives to both Ada and
FORTRAN for scientific application programming;
the FDD has recently begun using C and C ++ on some
development efforts. In addition, the organization,
the standard process, and the experience of FDD
personnel have continued to evolve and mature.

The SEL conducted an assessment to quantify the
overall impact of Ada in the FDD, to determine why
Ada has not flourished, and to recommend future
directions regarding the use of Ada. In addition to
comparing Ada project results with the 1985
baseline, this study compared Ada project measures
with contemporaneous FORTRAN projects and
assessed the applicability of Ada/OOD within the
context of current organizational needs and goals.
This study also attempted to capture and quantify the
subjective factors affecting the technology transfer
process, i.e., attitudes and beliefs held about
Ada/OOD among users and others in the
environment. To detect and filter any organizational
bias for or against the technology, an independent
consultant, Software Metrics, Inc., served as the
primary investigator for this study. Preliminary
results of this study were reported at the Eighteenth
Annual Software Engineering Workshop in 1993.2

1.3 Document Organization

This report describes the SEL’s approach to
examining the suitability of Ada for use in the FDD
and documents FDD experience using the technology
on both experimental projects and on operational
flight dynamics software systems. It summarizes
nearly 10 years of experimentation and limited
operational use of Ada, draws conclusions about why
the Ada transition was less complete than expected,
and offers recommendations for the role of this
technology in the FDD’s future. The document is
organized as follows:

• Section 2 describes how Ada was introduced in
the FDD and how its usage evolved. It describes

− All of the projects on which Ada/OOD was
used, both experimental and production

− SEL studies that focused on particular
organizational goals for the technology

− Ada/OOD training offered

SEL-95-001 4

• Section 3 presents the results of quantitative
analysis of SEL data from Ada projects. Quanti-
tative measures of the evolving Ada experience
are compared with the 1985 SEL baseline and
also with the evolving FORTRAN baseline
during the study period (1985–1994). Software
reuse, process, cost, schedule, reliability, main-
tainability, and system performance are
evaluated.

• Section 4 presents the qualitative data on
attitudes and perceptions that were gathered by
the independent assessment team. Lessons
learned and factors that affected acceptance of

Ada and the smoothness of the technology
infusion are addressed, including vendor support.

• Section 5 summarizes Ada’s overall impact on
cost, schedule, reliability, and other organiza-
tional goals. It presents key findings and tech-
nology transfer lessons learned, and makes
recommendations for the future use of Ada in
this organization.

• Appendix A presents the data tables used in the
analysis. Appendix B is a detailed analysis of
the reuse approaches used on the FORTRAN and
Ada projects. Appendix C includes the surveys
used for collecting subjective data.

5 SEL-95-001

Section 2. Experience With Ada in the FDD

The FDD’s activities during its transition to Ada fall
into three categories that span overlapping phases
thoughout the study period: experimentation and
study, pilot operational use, and limited routine
operational use in one application domain. Figure 2
shows the timeline for the various projects, research
efforts, and studies conducted and in which activity/
transition phase they are included.

Experimentation and study have continued through-
out the transition period, providing a context for
investigating new approaches and resolving critical
issues. The Ada work began with an experiment in
1985 that was designed to foster learning about the
language and its applicability in the FDD while
posing minimal risk to the operational environment.
This initial experiment was conducted as a parallel
effort, where two versions of the same system were
developed: one in FORTRAN (operational version)
and another in Ada (study version). Following this
experiment, the FDD developed a series of research
prototypes to investigate new ways of using Ada that
would lead to future advancements (e.g., recon-
figurable software). Additionally, the SEL conducted
several studies to probe more deeply into issues
raised by pilot projects (e.g., performance) and to
better understand areas that the pilot projects would
not encounter (e.g., portability).

Pilot operational use began in 1987, when the FDD
began using Ada to develop small, low risk
operational simulators. Each of these pilot projects
focused on specific goals and contributed to the
evolution of the use of Ada in the FDD, in addition to
producing software systems that were used for actual
mission support. Finally in 1990, the FDD began to
use Ada routinely on one class of software systems,
telemetry simulators.

This discussion of the FDD’s Ada transition
experience is organized as follows:

• Section 2.1 outlines the evolving organizational
goals that provided the context for the Ada
activities, and then summarizes the studies and
projects, focusing on the key objectives, accom-
plishments, and lessons learned from each effort.
To simplify the discussion, related activities are
grouped.

• Section 2.2 briefly describes each project that
developed operational software in Ada regardless
of whether it was considered an experiment, a
pilot, or routine development. Projects are in
two domains: dynamics simulators and telem-
etry simulators. A brief discussion of GRODY,
the initial experimental system, is included here
because it was an important building block for
design and code reuse on subsequent operational
systems.

• Section 2.3 presents experience on research and
development systems that have been developed
to investigate new approaches.

• Section 2.4 summarizes each of the SEL studies
conducted during the Ada transition, including
the initial parallel development experiment (the
GRODY system) and studies on reuse, port-
ability, performance, and software size.

• Section 2.5 discusses the various approaches to
training used during the transition and the
effectiveness of the different methods.

2.1 Goals and Expectations

The overall goal of the FDD was to reduce
development cost and cycle time for producing flight
dynamics mission support systems by maximizing
reuse. Ada and OOD had potential for significantly
increasing reusability. In addition, the FDD was
interested in adopting the high-quality software
engineering practices supported and encouraged by
these technologies. As local experience with Ada/
OOD grew, specific subgoals evolved within the
context of the overall goal, which helped establish
areas of focus for individual projects and studies.
The proliferation of languages (the DoD’s original
concern), however, was not an issue because the
FDD had always used only one or two languages for
its development.

Over the past 10 years, the FDD has delivered
approximately 1 million lines of Ada code. Figure 3
illustrates the growth of Ada experience in this
environment. The curve shows the accumulated
amount of code (in KSLOC) as each project was
delivered (the time before the first project delivery is
foreshortened for clarity).

SEL-95-001 6

Activities

Projects

Studies

Dynamics Simulators

GRODY
GOADA

EUVEDSIM

Telemetry Simulators
GOESIM

UARSTELS
EUVETELS
SAMPEXTS

POWITS
TOMSTELS

FASTELS
Simulators in progress

Embedded Systems

TONS

Reusable Assets R&D
FDAS

GENSIM
COMPASS

FDDS/GSS

Initial Experiment (GRODY)
Reuse Study

Portability Study
Performance Study

Ada Size Study
Independent Assessment

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

10
02

46
58

-g
01

Technology
Transition Phases

Experimentation and Study

Pilot Projects

Routine Use

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Figure 2. FDD Ada Activity Timeline

7 SEL-95-001

The four regions under the curve in Figure 3 give a
rough approximation of the evolution of goals and
objectives for the study and use of Ada in the FDD.
Initially, the main concern was familiarization with
the language, although the initial projects also
stressed reusability as a primary objective. Soon, the
focus turned to the structured generalization of
systems, and the success of these generalizations led
to an overall improvement in the efficiency of the
Ada software development process. Recently, there
has been an additional focus on optimizing the
development process specifically for use with the
Ada language. This optimized process has been
specified and documented in a recent supplement3 to
the standard software development process guide-
book used by the FDD.4 These Ada study goals for
reuse, generalization, and process provided the
framework for the evolving use of Ada in this
environment.

Each of the Ada projects and studies furthered the
FDD’s understanding of Ada and the organization’s
progress toward its overall goal. As short-term goals
guided and focused the projects, project experience
and study findings adjusted the FDD’s course as it
transitioned to Ada. Table 1 provides a time-ordered
(by project midpoint) snapshot of the Ada project
goals and key experiences.

2.2 Project Experience

By mid 1994, the FDD had completed 10 production
projects in Ada using OOD. Because this technology
was considered to be a radical change in this
environment, the first project, GRODY, was a
controlled experiment where a parallel FORTRAN
system was built to the same specifications; the
FORTRAN system was intended to be used
operationally. This was followed by a series of
projects that focused on applying the technology in
new ways in continual pursuit of the organization’s
goals. The following sections present the FDD’s
project experience using Ada. Projects are grouped
by application type; applications include dynamics
simulators, telemetry simulators, and R&D systems.

2.2.1 Dynamics Simulators

Dynamics simulators perform closed-loop simulation
of a spacecraft’s attitude control system. They
simulate the environment around the spacecraft, the
various attitude sensors, attitude determination and
attitude correction command generation based on
sensor readings, and the reaction of the onboard
control system to those commands. Flight dynamics
analysts use these simulators to analyze the
robustness of the spacecraft’s attitude control system;

1/87 1/88 1/89 1/90 1/91 1/92 1/93

200

400

600

800

1000

Process

Generalized systems

Reuse and cost

Familiarization

GRODY
GOESIM

UARSTELS

GOADA

EUVETELS

EUVEDSIM

SAMPEXTS
TONSVAX

POWITS

TOMSTELS
FASTELS

D
el

iv
er

ed
 K

S
L

O
C

*
in

 A
d

a

*Physical lines, including comments and blank lines

Figure 3. FDD Ada Goals and Experience

SEL-95-001 8

Table 1. Ada Project/Study Goals and Experience

Project or Study Goals Results/Key Lessons Learned

GRODY Experiment
(parallel development)

Explore the Ada language; measured
comparison with FORTRAN

Ada and OOD work well together;
Training is required;
Performance is slow

GOADA Maximize reuse of GRODY Reused 28% of GRODY; had serious
integration problems, slow performance

GENSIM Build generalized simulator components Developed some generalized utilities,
specifications, and concepts

GOESIM Deliver first-of-a-kind Ada system on
schedule and within budget

Delivered AdaTRAN on schedule and within
budget; code not reusable

FDAS Assess usefulness of Ada to build
reconfigurable parts

Successfully used Ada generic packages to
build reconfigurable components

UARSTELS Maximize future reuse Developed a reusable generic architecture
and the corresponding reusable compon-
ents

EUVETELS Maximize verbatim reuse; reduce effort Successfully reused 88% of UARSTELS
without change

Portability Study Investigate Ada portability by rehosting
GOESIM from VAX to IBM mainframe

Mainframe compilers are immature; Ada
software easily ported

EUVEDSIM Maximize reuse; interface with FORTRAN
and Ada flight code

Successfully reused 69% of GOADA;
smooth integration of all components

Reuse Study Understand what makes Ada components
reusable

Identified OOD and Ada generics as reuse
facilitators

TONS Develop an embedded Ada system;
performance is critical

Easily met performance requirements;
encountered severe problems integrating
with hardware and support software; tools
available immature

Performance Study Understand cause of performance problems Developed Ada efficiency guidelines

SAMPEXTS Minimize cost and schedule with high reuse Modified process for high reuse; significantly
lower cost and shorter schedule

POWITS Maximize reuse of existing software to
develop simulator for new domain; use high
reuse process

Major difficulties reusing existing code for
new domain; poor performance; cost and
schedule overruns

COMPASS Develop new architecture and reuse
strategy for all future FDD missions

Generated specification and implementation
concepts; produced generalized specifica-
tions for applications components and
designed system infrastructure

Ada Size Study Understand cost implications of Ada size
variation

Preliminary cost model for Ada systems

TOMSTELS Use high reuse process; tune performance Routine successful project; good
performance

FASTELS Use high reuse process; tune performance Routine successful project; good
performance

FDDS/GSS Build reconfigurable application software
components based on COMPASS concepts

In progress...

9 SEL-95-001

they use the simulator to model the spacecraft’s
behavior under normal and various degraded
conditions, such as failed sensors or thrusters. These
simulators are used primarily to do prelaunch
analysis, but also are used in emergency situations to
model the spacecraft’s reaction to a command
sequence when a real failure occurs during the
mission. Traditionally, dynamics simulators have
had rather crude user interfaces. Most of the effort
during development is spent on the verification of the
control laws and accuracy of the hardware models.

Dynamics simulators were chosen as the first flight
dynamics application to be built in Ada. They were
considered a good starting point for the following
reasons:

• They are relatively low-risk systems from the
operational support point of view; that is, they
are not used daily to provide mission operational
support.

• They were usually implemented on a VAX
computer where a viable Ada compiler and
development tools were available.

• They are medium-sized systems by FDD
standards (average size ~ 50K).

• They contain complex mathematical algorithms,
which is representative of most flight dynamics
systems.

To date, the FDD has developed three dynamics
simulators in Ada, all based on the same system
architecture with steadily increasing reuse. Key
system attributes/measures are shown in Table 2.

The GRO Dynamics Simulator in Ada
(GRODY) (1985-1988)

GRODY was the first Ada system developed in the
FDD. This project’s major purpose was to experi-
ment with the Ada language to learn about it and to

evaluate its applicability to the environment. Early in
the project, the team selected OOD as an appropriate
design technology to combine with Ada. Because
GRODY was developed in parallel with a sister
FORTRAN system (GROSS), this project did not
have to produce an operational system. However,
the goal of producing code potentially reusable on
future deliverable systems influenced design and
coding decisions.

Project-specific measures for GRODY are shown in
Table 2. This project tried several alternative design
approaches before settling on one. In fact, the search
for an appropriate methodology led to development
of a local methodology.5 The team developed
packages in parallel, but integrated them in a single
build. In addition, they developed a new screen-
oriented user interface that consumed a substantial
portion of the project’s resources. The project team
made heavy use of package nesting and tasking, but
used generics and typing rather sparingly.

The FDD learned several lessons from this project.
Complete results of the GRODY experiment are
summarized in section 2.4.1, including an extensive
list of lessons learned. It is important to note a few
key lessons here that greatly influenced subsequent
projects:

• Heavy nesting and data coupling led to severe
recompilation overhead.

• Improper or excessive use of tasking led to
extremely slow performance with the available
hardware resources.

• Ada source code is larger than FORTRAN
equivalents when counting SLOC. The com-
parison of GRODY and GROSS (the operational
version) source code (without adjusting for
differences in functionality) revealed a 3:1 ratio
of Ada to FORTRAN.

Table 2. Dynamics Simulator Project Data

Project Name Size
(KSLOC)

Overall
Reuse

Verbatim
Reuse

Effort
(hours)

Duration
(months)

Error Rate
(per KSLOC)

GRODY 128K 0% 0% 23,244 39 1.8

GOADA 171K 29% 4% 28,056 34 2.4

EUVEDSIM 184K 69% 21% 20,775 23 0.7

SEL-95-001 10

The GOES Dynamics Simulator in Ada
(GOADA) (1987-1990)

The GOES Dynamics Simulator in Ada (GOADA)
project was managed as an operational software
development project. Its primary goals were to
produce an operational dynamics simulator using
Ada and to reuse as much of GRODY as possible.
The project met these goals, producing an operational
system that contained 171 KSLOC, of which 29%
were reused from GRODY; the entire GRODY user
interface was reused. This project ended up 22%
over budget and was delivered 25% late due to severe
integration problems.

GOADA used the standard FDD development
approach for simulators, i.e., with the exception of
limiting the use of Ada tasks, developers gave little
emphasis to performance issues; in fact, tradeoff
decisions tended to favor fidelity over performance
during design. This was a major mistake, because
GOADA turned out to be one of the slowest
simulators in FDD history–leaving the users and
other developers with the impression that Ada was
inefficient. Furthermore, although GOADA sub-
systems were developed in parallel, the system was
integrated in a single build. This delayed the detec-
tion of interface errors and led to increased system
integration cost and schedule.

The GOADA project applied lessons learned from
the GRODY project. They reduced the use of tasking
as their only attempt to improve performance, and
they unnested all packages that were reused from
GRODY to reduce recompilation overhead. This led
to a lower-than-expected level of verbatim reuse
(4%).

The system design made extensive use of Ada’s
variant record structure and strings to create a highly
flexible central data structure. This allowed units to
be loosely coupled, which helped facilitate recom-
pilation of changes, but it did not allow the Ada
compiler to check the data types and, as a result,
many interface problems surfaced during system
integration. Use of the variant records also led to
excessive memory requirements on the VAX, which
degraded system performance.

This project contributed several key lessons learned
to the SEL’s understanding of Ada and OOD:

• Performance should not be taken for granted
when using new languages. Even when
performance requirements are not specified,
performance should be considered in the design

phase and benchmarking done to understand
performance impacts of design decisions.

• Unnesting significantly reduces recompilation
requirements.

• Because of the size and complexity of these
systems, multiple builds should be used.

• Use of variant records defeats the interface
checking feature of the Ada compiler and uses
excessive memory. If variant records must be
used, the process should be adjusted to
compensate for the lack of interface checking.

The EUVE Dynamics Simulator (EUVEDSIM)
(1988-1990)

The EUVE Dynamics Simulator (EUVEDSIM) was
the last dynamics simulator built in the FDD. At the
end of the system testing phase of this project, the
users determined that they no longer needed
dynamics simulators to perform their analysis;
although EUVEDSIM was thoroughly system tested
it was never formally acceptance tested by the user
organization. Nevertheless, this project produced an
operational dynamics simulator that contained
184 KSLOC.

One unique aspect of this project was that the
simulator was to integrate with the actual onboard
control software, part of which was implemented in
Ada and part of which was implemented in
FORTRAN. The EUVEDSIM project used proto-
typing during the design phases to learn how to inter-
face FORTRAN and Ada components. It turned out
to be fairly easy to interface between Ada and other
languages on the VAX.

The other goals of this project were to continue to
maximize reuse and to experiment with a build
approach to eliminate the integration problems
experienced on GOADA. Careful planning and
strong management led the EUVEDSIM project to a
successful completion. Overall reuse rose to 69%,
while verbatim reuse increased to 21% because much
of the code that was reused with revisions by
GOADA could now be reused verbatim. Unfortu-
nately, the variant record data structure was deeply
embedded in the reused code and it came with the
reuse. At this point, the FDD opted to maximize
reuse rather than redesign for efficiency. The SEL,
meanwhile, conducted a performance study (see
section 2.4.4) to fully understand the relationship
between design and coding decisions and run-time

11 SEL-95-001

performance, and, late in the EUVEDSIM project,
some changes were made to improve performance
based on the results of that study.

EUVEDSIM’s major contribution to the FDD’s
understanding of the Ada/OOD process was its inno-
vative build strategy. EUVEDSIM was developed
and integrated in three builds, building the inde-
pendent packages/subsystems first and the dependent
parts last. Basically, the system was built from the
inside out. This worked extremely well and integra-
tion went very smoothly. It also minimized rework
and the impact of changes, because most changes
occur in the algorithms, which are located in the
independent packages in EUVEDSIM. Dependent
parts of the code, such as the user interface, were
integrated last instead of first as was common in this
environment previously. In addition, code reading
and unit testing standards were rigorously enforced;
developers were not allowed to depend on the Ada
compiler’s safety net to catch their mistakes. This
led to higher quality units that were easier to
integrate.

This project demonstrated the following key lessons:

• A build strategy that is based on data and
package dependencies works well for Ada/OOD
systems. System integration went very smoothly
and rework was kept to a minimum.

• Programmers discovered that the error checking
provided by the Ada compiler is not a “silver
bullet.” Human beings still must check for
indirect interfaces and accuracy of algorithms,
for example. This fact was contrary to their
initial belief about Ada’s capabilities, which
perhaps had come about from reading the liter-
ature and listening to Ada language promoters.

• Code reading is an effective way to catch
problems that the compiler cannot. For example,

the EUVEDSIM project carefully checked the
interfaces during code reading, because they
were aware of the compilation problems
associated with the variant records structure.

2.2.2 Telemetry Simulators

Telemetry simulators produce simulated attitude
telemetry that is used to test a spacecraft’s Attitude
Ground Support System (AGSS). They are batch
programs that, based on a set of input parameters,
model the spacecraft’s attitude sensors, produce
sensor readings in engineering data units, convert the
data into bit streams, and pack the information into
telemetry streams according to one or more telemetry
formats. The size of each telemetry simulator and the
amount of processing it must do is directly related to
the number of telemetry formats and their associated
data rate for the spacecraft. Telemetry simulators are
primarily used before launch to test the AGSS and to
provide simulated data for prelaunch operational
simulations and training exercises. They are also
used during missions to test modifications to the
AGSS.

To date, the FDD has built seven telemetry
simulators using Ada. All but the first one are based
on the same generic architecture, which was created
for the FDD’s second Ada telemetry simulator
project, UARSTELS. Although the first few systems
were closely monitored and considered to be pilots,
building telemetry simulators in Ada has become a
standard way of doing business in the FDD since
around 1990. Through exceptionally high levels of
reuse, telemetry simulators now cost 40% less to
produce, are delivered in 50% less time, and have
85% fewer errors during development when com-
pared with the 1985 baseline for these systems.
Project attributes for the telemetry simulators are
shown in Table 3.

Table 3. Telemetry Simulator Project Data

Project Name Size
(KSLOC)

Overall
Reuse

Verbatim
Reuse

Effort
(hours)

Duration
(months)

Error Rate
(errors/KSLOC)

GOESIM 92K 29% 12% 13,658 23 1.4

UARSTELS 68K 35% 17% 11,526 22 2.2

EUVETELS 67K 96% 88% 4,727 19 0.1

SAMPEXTS 61K 95% 85% 2,516 11 0.2

POWITS 68K 69% 39% 11,695 26 1.2

TOMSTELS 52K 97% 75% 3,839 10 0.1

FASTELS 65K 92% 64% 6,039 15 0.5

SEL-95-001 12

The GOES Telemetry Simulator (GOESIM)
(1987-1989)

The GOES Telemetry Simulator (GOESIM) was the
first telemetry simulator developed in Ada. Its goals
were almost the opposite of the GRODY project
goals. The GOESIM project was to demonstrate that
an Ada system could be delivered on time and within
budget. Tradeoffs were to favor schedule and cost
over language exploration. The system was also to
reuse as much code from GRODY as was possible.
The project team comprised people with little or no
Ada experience; a few had flight dynamics
experience. However, the team received Ada training
before and during project start-up.

The decision to use Ada came late on this project.
Both FORTRAN and Ada were being considered up
until the preliminary design review (PDR), at which
time upper management committed to using Ada.
This constrained the preliminary design to a
FORTRAN-like structured design, which, due to
budget and time constraints, was never redesigned
after Ada was chosen. Thus the system made little
use of Ada features and was coded in what is
commonly referred to as AdaTRAN.

The project met its goals. GOESIM, comprising
92 KSLOC, was developed in two builds driven by
user needs. It was delivered on schedule with only
minor cost overruns well within the tolerance that
was typical for flight dynamics systems. Only small
utilities could be reused from GRODY, and even that
was difficult, causing the GOESIM team to write
extra code to interface with the reused utilities. Thus,
GOESIM only achieved 29% reuse.

GOESIM contributed the following key lessons to the
FDD’s understanding of Ada:

• Operational schedules can be met on a first-of-a-
kind Ada system, if a conservative approach is
taken and experimentation is limited.

• To take full advantage of Ada, early commitment
to using the language is needed; i.e., before the
design phase starts.

• It is very difficult to reuse object-oriented parts
in a structured design.

The UARS Telemetry Simulator (UARSTELS)
(1988-1989)

The UARS Telemetry Simulator (UARSTELS)
project broke new ground and laid the foundation for
the FDD’s future use of Ada. Project personnel, who
included several experienced Ada developers,
introduced a new generalized architecture that used
generics extensively to facilitate future reuse. The
project goals were to deliver an operational simulator
on time and within budget and to continue to
maximize reuse.

After analysis of GOESIM showed that there was
little potentially reusable code there, the UARSTELS
team proposed that they pursue the goal of
maximizing reuse by focusing on building for future
reuse rather than by reusing existing products. They
performed domain analysis for two similar
spacecraft, UARS and EUVE, for which simulators
would be built almost concurrently. This helped the
team identify common elements and recognize where
and how a simulator should be generalized. The
resulting object-oriented design isolated and
packaged functionality and its data for each space-
craft element so that each element could be replaced
or reused easily without affecting the rest of the
system. The system was implemented using Ada
generics so that only parameterized instantiation
would be required to tailor packages rather than code
modification. This was expected to facilitate
verbatim reuse.

The project met its goals. The operational
UARSTELS was delivered on time and within
budget. Interestingly, UARSTELS (68 KSLOC) was
smaller than GOESIM (92 KSLOC) even though
UARSTELS contained more functionality.
UARSTELS also required substantially more
memory to execute than did GOESIM; this slowed
the simulator down due to “page thrashing.”

UARSTELS contributed the following lessons to the
FDD’s understanding of Ada/OOD:

• Use of generics leads to large memory require-
ments on the VAX due to the way DEC Ada
implements generics.

• Heavy use of generics shrinks overall source
code size, but increases executable size. SLOC

13 SEL-95-001

is not a good measure of functionality in Ada
systems.

• Heavy use of generics makes the design harder
to understand for Ada novices, including
managers and users who must review it.

The EUVE Telemetry Simulator (EUVETELS)
(1989-1990)

The EUVE Telemetry Simulator (EUVETELS)
project’s primary goal was to deliver an operational
simulator on time and within budget while reusing
UARSTELS extensively. Although extremely high
reuse was predicted for this system, the project was
planned fairly conservatively to ensure a successful
delivery. The project was monitored closely to
determine the impact of high reuse on effort and
schedule and their allocation to life-cycle phases.

Ninety-six percent of EUVETELS (67 KSLOC) was
reused from UARSTELS, of which 88% was
verbatim reuse. As a result, the project achieved
record high productivity and reliability rates. Due to
this high level of verbatim reuse, EUVETELS
created a common source code library and experi-
mented with configuration management strategies to
deal with reused code that was being changed. This
was particularly challenging because the UARSTELS
and EUVETELS developments were going on in
parallel; thus EUVETELS was trying to reuse a
moving target.

The EUVETELS demonstrated the following key
lessons:

• Use of generics leads to improved verbatim
reusability.

• Heavy nesting of generics makes the system
complex and, therefore, hard to understand for
reusers and maintainers. Better documentation is
required.

• Configuration management procedures must be
defined early in the project’s life, when reusing a
large amount of software.

• Verbatim reuse dramatically improves produc-
tivity and reliability.

The SAMPEX Telemetry Simulator
(SAMPEXTS) (1990-1991)

The SAMPEX Telemetry Simulator (SAMPEXTS)
project’s goal was to minimize development cost

while maximizing software reuse. As expected, this
project achieved extremely high levels of reuse; 95%
of SAMPEXTS (60 KSLOC) was reused from either
UARSTELS or EUVETELS, with 85% reused
verbatim. Development costs were down as well;
SAMPEXTS was developed for 20% the cost of
developing the system from scratch.

This project met its goal of reduced development cost
by streamlining the development process. Reuse
analysis was done early during the requirements
definition phase and as a result the requirements and
functional specifications document specified modifi-
cations to UARSTELS and EUVETELS rather than
whole system functionality. Project personnel
collapsed the preliminary and detailed design phases
into a single design phase and held a combined
PDR/critical design review (CDR). In addition, they
modified the UARSTELS system description and
user’s guide documents during the design phase
rather than generating new design documents.
System testing was extremely smooth and finished
ahead of schedule. Only 10 discrepancies were
uncovered during the system and acceptance testing
phases combined, resulting in a significantly lower
system error rate of 0.2 errors per KSLOC.
Disciplined code reading, inspections, and unit
testing contributed to the improved reliability.

The SAMPEXTS demonstrated the following key
lessons:

• A single design phase that culminates in a
combined PDR/CDR works very well for high-
reuse systems.

• High reuse of existing Ada software (that was
designed for reuse) results in significant savings
when producing very similar application
software within the same problem domain.

• High reuse results in significantly fewer
development errors, thus testing goes smoother
and faster.

The WIND/POLAR Telemetry Simulator
(POWITS) (1990-1992)

The WIND/POLAR Telemetry Simulator (POWITS)
project’s goal was to produce a telemetry simulator
that could be used to support two missions, the
Interplanetary Physics Laboratory (WIND) and the
Polar Plasma Laboratory (POLAR). At the onset, the
FDD expected this to be a routine high-reuse Ada
project. No special goals were set. However, several

SEL-95-001 14

seemingly small differences became major obstacles
for the team.

POWITS supported two spacecraft with spin-
stabilized attitude control systems, rather than the
three-axis-stabilized control system that was modeled
in all of the previous Ada telemetry simulators. This
essentially created a new telemetry simulator domain,
which caused much of the existing software to
require modification. Retrofitting the UARSTELS
architecture for spin-stabilized applications was
extremely difficult. In addition, the resulting design
was not optimal for a spin-stabilized spacecraft,
causing the system to perform poorly. The system
never did meet its performance requirements.

POWITS also marked the first reuse of the
UARSTELS architecture and software by a totally
independent team; all of the other simulator teams
included at least one member who had developed
UARSTELS. As a result, the POWITS team lacked
insight into the UARSTELS code, which made
reusing it more difficult. This reiterated for the FDD
that, although the extensive use of Ada generics
contributed to high verbatim reuse, the code requires
familiarity or documentation for it to be understood
and reused efficiently.

The POWITS team met its goal of producing an
operational simulator to support two spacecraft, but
late. Delivered 7 months after its original target date,
POWITS contained 68 KSLOC, of which 69% was
reused and 39% reused verbatim. Most team
members agree that if they had understood the
existing architecture better, they would have realized
the true impact of the change in attitude control
systems and would have spent more time and effort
investigating design alternatives, rather than trying to
force fit UARSTELS. Both implementation and
acceptance testing took much longer than expected:
implementation due to the extent of code
modifications required, and acceptance testing due to
testing for two spacecraft.

POWITS contributed the following lessons to the
FDD’s understanding of Ada/OOD:

• Exception handling needs to be defined in detail
during design. Every procedure/function should
have an exception handler.

• Nested Ada generics make reusable code very
hard to understand. Additional diagrams that
show the overall system structure are needed to
supplement the object diagrams that focus on

subsystem or package composition one layer at a
time.

• Ada code is not self-documenting. Novice Ada
developers found the in-line commentary in the
reused software to be very sparse compared with
typical flight dynamics FORTRAN systems,
while the code itself was harder to understand.
Developers should include more comments in
code that is designed for reuse.

• Code reuse cannot be assumed; it must be
carefully analyzed on a case by case basis. Each
project must evaluate potentially reusable
systems, subsystems, and components con-
sidering the project’s functional, operational, and
performance requirements.

The FAST Telemetry Simulator (FASTELS)
and TOMS Telemetry Simulator (TOMSTELS)
(1992-1993)

By 1992, FDD’s development of telemetry simulators
in Ada had become routine. In addition, project plans
were regularly based on expectations of high
verbatim reuse. The FAST Telemetry Simulator
(FASTELS) and TOMS Telemetry Simulator
(TOMSTELS) projects, which began in 1992, had
similar goals. Their primary goal was to produce
operational telemetry simulators while maximizing
reuse and guaranteeing acceptable system perform-
ance. Project schedules were now set shorter from
the start based on the SAMPEXTS success with the
modified process for high reuse. Using the type of
attitude control system as a discriminator (i.e., spin-
or three-axis-stabilized), FASTELS reused POWITS,
and TOMSTELS reused UARSTELS and
SAMPEXTS, respectively.

The only project concern that still remained regarding
the Ada language was system performance. Higher
data rates and modeling requirements were expected
to severely tax the already sluggish Ada software
being reused. Both projects benchmarked perform-
ance and prototyped performance enhancements
during design to deal with this risk. As a result, both
simulators met or exceeded their performance
requirements.

Both projects delivered acceptable operational sim-
ulators on schedule. These projects both used the
modified high-reuse process that collapsed
preliminary and detailed design into one phase and
held only one design review, confirming that the new
process worked well. Developers who had not

15 SEL-95-001

worked on telemetry simulators previously continued
to note that they had great difficulty understanding
the highly general architecture and nested generic
code in the reused systems.

Review of the software development history reports
found no lessons learned regarding the Ada language
from either project. This indicates that the use of
Ada truly has become routine on telemetry simulator
projects. As of late 1994, all future telemetry
simulators are planned to be implemented in Ada;
however, a new architecture and different design and
implementation concepts will be used beginning in
1995. See the discussion of Reusable Assets
Framework and Components later in this section.

2.3 Research and
Development Systems

As part of the investigation of Ada and OOD, the
FDD developed several R&D systems to help them
understand the drawbacks and benefits of new
approaches and applications. From these efforts, the
organization learned about the challenges of
developing embedded systems and also developed
and refined an approach to creating and man-
aging reusable assets. That research has set the
direction for the FDD’s formalization and
exploitation of reusable components.

2.3.1 Embedded Systems

The FDD rarely builds embedded systems because its
main charter is to support ground data processing. In
fact, only a very small percentage of NASA’s
software is embedded; this is mostly onboard control
software for satellites and manned spacecraft. In
1989, the FDD began developing a prototype to
demonstrate the feasibility of performing spacecraft
navigation computations onboard rather than on the
ground in the flight dynamics facility. They chose to
implement the prototype using Ada, taking advantage
of the opportunity to use the language for an
embedded application, the domain for which it was
originally designed.

The TDRSS Onboard Navigation System
(TONS) (1989-1991)

The TDRSS Onboard Navigation System (TONS)
was developed in Ada on a VAX using the TARTAN
Ada development environment and cross-compiler.
The system was targeted to execute on dual MIL-

STD-1750A microprocessors built by Texas
Instruments. Both the language and the hardware
were chosen for compatibility with the other onboard
control systems on the EUVE spacecraft.

Performance, in terms of processing speed and
memory consumption, was of great concern on this
project. The design team performed a thorough
compiler evaluation, examining output object code
for every language construct, to determine efficiency
guidelines for coding. This was extremely success-
ful. The final product easily met its very challenging
performance requirements.

However, the FDD’s experience building this
embedded system was discouraging. The TONS
project fought a never-ending battle against subtle,
undocumented, and apparently unknown incompati-
bilities between the 1750A hardware and the
TARTAN Ada support software. Neither the 1750A
nor the TARTAN Ada development tools provided a
standard, mature, working environment. Because the
diagnostic tools were extremely primitive, project
personnel depended on hot-line vendor support to
help isolate and resolve problems. However, when
the team encountered significant problems, vendors
were unable to provide adequate support. The team
had been assured at the start of the project that
modifying the TARTAN “kernel” to operate in dual-
processor mode was not only possible, but
straightforward.

The team’s development approach was first to
develop the software on the VAX using the
efficiency guidelines and then to test it on the VAX
to verify the complex algorithms before moving it to
the limited resources of the 1750A. This approach
worked well. The team also developed the dual-
processor communication software and modified the
TARTAN kernel and tested it before porting the
application software to the 1750A.

While porting the code to the 1750A, the TONS team
encountered more difficulties and inconveniences
involving different number precisions and restruc-
turing the code to be able to use the TARTAN
debugger. Their problems compounded when they
tried to integrate all parts of the system and execute
in dual-processor mode. Each processor would
operate correctly when only a small driver was
executing on the other processor, but the team could
never get all system components to function on both
processors simultaneously. The project ended up
restructuring the system to operate on only one
processor and delivered that system to support the

SEL-95-001 16

experiment. On the positive side, the team felt that
working in Ada had allowed them to restructure the
system very easily and quickly.

Although the failed dual-processing problem was
never solved, discussions with the vendors and other
experienced Ada programmers point to the large size
of the TONS executable as a major contributor to the
problem. Most embedded systems are small and
operate within a single memory page, while TONS
spanned many pages. Unfortunately, embedded
navigation computations are very complex and
require quite a bit of space.

2.3.2 Reusable Assets Framework
and Components

The FDD developed several prototypes to gain an
understanding of the importance of architecture,
programming language, and library support on the
reconfigurability of reusable software components.
After completing the prototypes and learning from
real project experience, the FDD initiated an effort to
build a new project support environment and a
repository for reusable application code that would
facilitate the rapid construction of future flight
dynamics ground systems and simulators from large-
scale reusable components. To date, Ada has been
the FDD’s language of choice for these components,
which support a broad range of flight dynamics
applications.

The Flight Dynamics Analysis System
(FDAS) (1986–1989)

The Flight Dynamics Analysis System (FDAS) was
the FDD’s first effort to use Ada to explore
reconfigurable architectures. FDAS was a prototype
software reconfiguration tool, which performed
transaction processing from user commands to
integrate and execute a library of reconfigurable
parts. FDAS was very different from other flight
dynamics applications, which allowed the FDD to
broaden its application experience with Ada. FDAS
interacted very heavily with VAX system services
and had a flat, loosely coupled architecture. Because
of this, the Ada packages could be developed in
parallel and the system integrated and tested in a
single build with ease.

Early in the project, the FDAS team grappled with
the issues of how to structure the reconfigurable
components so that they could be “plug compatible.”
After clearly defining an application structure that

would meet the reconfiguration needs, the team
discovered that Ada provided all of the mechanisms
required to implement truly reconfigurable code.
This discovery led to the UARSTELS generic
architecture and formed the basis for the FDD’s
future work in this area.

The Generalized Simulator (GENSIM)
(1987–1989)

The Generalized Simulator (GENSIM) project was a
research effort to define a generalized architecture
and construct generalized components that could be
configured easily to produce a combined attitude
dynamics and telemetry simulator. The team began
with the requirements phase; based on their
experience with previous simulators, they prepared
functional specifications for the generalized com-
ponents. Unfortunately, this project was funded at a
very low level of effort and produced very little
actual code. However, it furthered the FDD’s under-
standing of reusable/reconfigurable flight dynamics
application software. Specific contributions in-
cluded:

• An improved set of low-level utilities

• Simplification of early systems’ object states

• Generalized math specifications

The Combined Mission Planning and Attitude
Support System (COMPASS) (1989–1993)
and the Flight Dynamics Distributed System
(FDDS) (1993–present)

The Combined Mission Planning and Attitude
Support System (COMPASS) project’s goal was to
build a new flight dynamics project support
environment and a repository for reusable application
code. This project defined a distributed architecture,
new user interface and executive support services,
and guidelines for specifying and implementing
reconfigurable flight dynamics application com-
ponents. This project was to proceed in parallel with
other traditional mission software development
efforts. When COMPASS had developed enough
support services and enough application code, it
would be used to construct simulators and major
ground support subsystems for mission support.

COMPASS was terminated in mid-1993 because it
was too expensive to produce the software as a
parallel effort without mission funding. However,
the COMPASS objectives and experience were not

17 SEL-95-001

lost, but rather absorbed into a new conceptual
framework called the Flight Dynamics Distributed
System (FDDS). The major goal of these systems
remains the same. The primary difference is how the
projects are organized and funded. The FDDS com-
prises two parts, the User Interface Executive (UIX)
and the Generalized Applications Support Software
(GSS), which are managed independently. Although
the UIX is supported with institutional funds, the
GSS, which produces reconfigurable components for
use on specific missions, is supported mostly by
mission funding. The GSS relies heavily on the
COMPASS specification and implementation con-
cepts and is implementing all reusable applications
components in Ada.

The FDDS/GSS has made significant advances in the
application of Ada and OO concepts, including:

• First use of object-oriented specifications, which
enables the development of classes (with the
attendant cost savings) and enhances the
understandability of Ada code.

• Improved use of abstract data types.

• Separation of math models (in classes) and
architecture considerations (in object managers).
For example, all error messages are sent via the
object manager, not classes. The implication is
that the classes can be reused in a different
architecture without modification, but would
meet the same math specification.

• Enhancement of FDD utilities for completeness,
efficiency, and better abstraction.

• Run-time configuration, object allocation, and
dependency setting.

2.4 Studies

Concurrent with the project experience described in
the preceding paragraphs, the SEL conducted several
studies to assess the risk and potential benefits of
Ada/OOD and to better understand Ada-related
issues as they arose through practical application of
the technology. In each case, specific goals were set
and the results recorded and considered when
planning subsequent projects and research into the
use of Ada.

2.4.1 GRODY/GROSS Parallel
Development Experiment
(1985–1989)

To introduce Ada into the FDD and assess its
applicability, the SEL conducted a controlled study in
which two dynamics simulators were developed to
meet the same requirements for the Gamma Ray
Observatory (GRO) mission. One system, the GRO
Dynamics Simulator in FORTRAN (GROSS) was
developed in FORTRAN using structured design
methods, as was typical in the FDD. A second
system, the GRO Dynamics Simulator in Ada
(GRODY), was developed in Ada using OOD
techniques. GROSS was to be used operationally and
would serve as a basis for comparing both product
and process measures. Both systems were built on
the VAX 780 computer.

The primary goals of this experiment were to
understand and characterize the Ada development
process and to establish and evaluate baseline
measurements for Ada development. GRODY
personnel were given a substantial amount of training
(see section 2.5.1 below) and were encouraged to
fully exercise the language; that is, to try out all new
language features that might be applicable in this
environment. The FDD goal of high reuse was also
emphasized and the team was encouraged to consider
future reusability when designing and coding the
system.

GROSS was funded, staffed, and managed as a
standard FDD project. It was schedule driven and
had to respond to all requirements changes.
GRODY, on the other hand, was funded as a research
effort. Because of this, management decisions often
favored full exploration of alternative solutions to
technical problems even if it resulted in schedule
slippage. This led to schedule delays, with GRODY
finishing 16 months after GROSS.

One of the major problems encountered by the
GRODY team was the lack of available methods to
transform a set of functional specifications (with an
implied structured design) into an object-oriented
design. The team spent a substantial amount of effort
during the design phase cleansing the requirements of
design implications and developing a methodology5

for the project.

SEL-95-001 18

Despite the SEL’s desire to keep the functionality the
same in both systems, so that the relationships
between FORTRAN and Ada products and project
characteristics could be captured, the two systems
diverged somewhat. The GRODY team designed
and implemented a significantly more sophisticated
user interface than typically had been supplied for
dynamics simulators. Thus the code size and total
effort on the Ada project ended up much higher, but
perhaps would have been closer if GRODY had
implemented the same user interface as GROSS.
Conversely, GRODY did not have the full set of
dynamic models and onboard computer models that
were present in GROSS because the GRODY team
was not required to respond to the many requirements
changes that altered GROSS. Even with these
differences, the SEL was able to get an idea of the
relationship of FORTRAN to Ada parameters.

The primary results of this study are listed below:

• Training for Ada is most effective when it
ensures that developers understand the software
engineering principles embodied in Ada, the
design methodology to be used, Ada syntax and
semantics, and any vendor-specific features of
the Ada environment, such as input/output
details or the library management system.
Managers and reviewers also need training.

• Effort distribution among life-cycle phases and
activities was nearly the same for FORTRAN
and Ada.

• Productivity measured as code development rate
was higher in Ada, although the Ada system
consumed more total effort because it was larger.
GRODY’s extensive new technology develop-
ment and the associated learning curve drove the
total effort up, thus reducing productivity.

• Reliability was lower with Ada but was con-
sidered primarily an effect of this project repre-
senting the first use of Ada in this environment.

• Ada design characteristics differed significantly
from the FORTRAN/structured system. The
Ada design directly reflected newer software
engineering principles, such as information
hiding.

• Code required more source lines with Ada, but
was more readable. Counting SLOC, the Ada
system was 2.5 times larger than the FORTRAN
system; counting statements, it was 1.5 times

larger (for similar, but not identical
functionality).

• Testing showed little difference between the two
languages. (This result was expected because
the FDD functional testing techniques reduce the
impact of the implementation language.)

• Team satisfaction was higher with Ada. At the
end of the project, the Ada team requested
assignment to Ada projects, and a number of the
FORTRAN developers also switched to Ada.

• The General Object-Oriented Design (GOOD)
methodology5 was developed to meet the
specific needs of the flight dynamics environ-
ment.

2.4.2 Reuse Study (1990–1991)

In 1990, the SEL conducted a reuse study6 to
determine reuse patterns and trends in flight
dynamics systems and to determine what attributes
make software components reusable. The SEL
analyzed the reuse of software source code
components among nine Ada projects developed in
the flight dynamics environment.

SEL analysts produced six different types of reuse
representations to highlight reuse among a large
number of components. They discovered that the
majority of Ada library units reused without change
was developed specifically for flight dynamics
applications rather than from the general utilities
libraries that had been purchased. This contradicted
the belief that purchasing a library of standard
computer science components would facilitate reuse.
By tracing the lineage of the highly reused
components, the study provided valuable insight into
the effects of unnesting, Ada generics, and OOD.

The study concluded that

• OOD significantly improved the modularity for,
and level of, reuse.

• Ada generics significantly increased the level of
verbatim reuse.

• Highly reusable software had been produced for
telemetry simulators of three-axis-stablized
spacecraft.

The study recommended that projects designing and
building software “for reuse” should produce a
software reuser’s guide. It also recommended that

19 SEL-95-001

domain-specific reuse libraries be created and
maintained.

2.4.3 Portability Study (1989–1990)

One of the primary goals of Ada’s designers was to
eliminate the proliferation of new languages and the
numerous dialects of existing languages by standard-
izing a defined syntax. The defined syntax was
expected to greatly reduce the level of effort required
to port an Ada system from one environment to
another. In 1989, the SEL conducted a portability
study7 to better understand the issues of portability of
Ada systems. A small study team rehosted the
operational GOESIM system from the VAX 8810 to
an IBM 4341. A secondary goal of the study was to
evaluate the suitability of the compiler available on
the mainframe and tools for supporting Ada develop-
ment on the mainframe.

The rehost consumed 133 staff-days over a 10-month
period. Nearly 38% of the total effort was spent
compiling the code and researching and fixing
compilation errors. When the rehost was complete,
18% of the system had been modified and 6% had
been newly created. Once the system was compiled,
testing was very easy. Most of the tests passed
successfully, however a few failed due to compiler
anomalies. Throughout the effort, the immaturity of
the compiler on the target system caused problems.

The study concluded that Ada does enhance
portability. It took less effort to rehost the Ada
system than a comparable FORTRAN system (based
on empirical data), even with all of the compiler
problems encountered. The ported system performed
as expected and vendor-specific features caused
fewer problems than are typical with other languages.
The study team also felt that the user-defined types,
in particular, made the rehost effort easier.

However, the study also concluded that the Ada
compiler and development tools available on the IBM
mainframe were not yet mature enough to support
development of large-scale flight dynamics software
systems. Debugging was difficult and expensive due
to time-consuming recompilations and the lack of a
debugging tool.

2.4.4 Performance Study
(1990–1991)

With the introduction of Ada and OOD into the flight
dynamics environment, performance surfaced as an

issue. Programming in an unfamiliar language,
combined with requirements for more sophisticated
software systems, had highlighted the need to predict,
measure, and control the run-time performance of
flight dynamics systems. In 1989, the SEL initiated a
study to better understand the effect of new design
and implementation approaches on system
performance.

The study’s objectives were to determine which
design and implementation alternatives lead to
accelerated run-times, to identify tradeoffs necessary
to achieve optimum performance, and to develop
guidelines to aid future Ada development efforts in
the FDD. To do this the study team performed
extensive measurement and analysis of the
performance of the internals of the GOADA system.
They also looked at different uses of the language in
small-scale benchmarks.

The study report8 documented that incorrect design
decisions were the largest contributor to poor run-
time performance. It also showed that Ada com-
pilation systems being used at that time had bugs that
often contributed to poor performance. The study
recommended that reused design be continually
reevaluated against evolving user requirements to
ensure adequate performance, and that developers use
performance analysis tools to evaluate and assess
compilation systems during design.

The study concluded that Ada simulators in the FDD
can be designed and implemented to achieve
performance comparable to existing FORTRAN
simulators when performance is considered through-
out the process. The study team produced a set of
efficiency guidelines9 for designing and coding Ada
systems on the VAX; they are summarized in
Table 4.

2.4.5 Ada Size Study (1991–1992)

By 1991, the SEL had collected measurement data
from enough Ada software development projects to
begin to develop an accurate cost estimation model
for flight dynamics Ada systems. For years, the SEL
had used software size as the basis for its cost and
schedule estimation models. Each project would
estimate the total number of new and reused lines of
code in the system (accurately reflecting the
functionality to be delivered), and then compute an
adjusted size, referred to as developed lines of code
(DLOC) (representing the amount of work to be
done), by scaling down the reused code size by a

SEL-95-001 20

reuse factor. Inconsistencies in the Ada project data
caused the SEL analysts to question whether size was
an accurate way of representing the functionality of
Ada systems. The SEL conducted the Ada Size
Study10 to answer this question and to develop a
better cost estimation model for Ada project
managers to use.

After characterizing the Ada development process in
the FDD, the SEL concluded that the adjusted size,
DLOC, was an accurate basis for estimating total
project effort for Ada. However, the reuse factor,
which represents the amount of work required to
reuse the code, should be higher for Ada systems
(0.3) than it is for FORTRAN (0.2). The study was
unable to determine the cause of this difference. The
study also produced a cost estimation model for Ada
systems. Although the model contained different
values for productivity, reuse factor, and phase
distribution, the same basic SEL estimation equation
worked for both FORTRAN and Ada systems. The
SEL Cost and Schedule Estimation Study Report,11

published in 1993, conducted a more in-depth
analysis of cost and schedule trends in the FDD and
offers a more thorough treatment of this topic.

2.5 Training

When infusing any new technology, training plays an
important role. Training was expected to be critical

for infusing Ada in the FDD because of the
complexity of the Ada language and the new way of
thinking required for using object-oriented
techniques. Several methods were used to expose
developers to Ada technology and to prepare them to
use it in the FDD: commercial videotapes with
outside facilitators, project-team training given by
local “experts,” and in-house developed college-style
courses. This Ada/OOD training is discussed in the
following sections, with comments on its effective-
ness in this environment.

2.5.1 Initial Training

The GRODY team received extensive training in Ada
before beginning the project. The training lasted
approximately 6 months and was equivalent to
2 months of full-time training for each individual.
The goal was to provide sufficient training in
software engineering principles, language syntax, and
OOD methodologies so that the team could make the
best possible use of Ada, i.e., so they would produce
a new, appropriate design for the Ada system as well
as code it in Ada. This training is described in detail
and evaluated in the GRODY Training Evaluation.12

The training was done in four parts: First, because
none of the team members had previous experience
with Ada, team members read Grady Booch’s book
Software Engineering with Ada. Second, the team

Table 4. Ada Efficiency Guidelines

Requirements
Analysis

• Match the data in the problem space (flight dynamics) to the appropriate data
structure in the solution space.

Design • Match the algorithm to both the data structure and the data.

• Design procedures and functions for each package that map data of a general type to
the data (hidden) optimal type.

• Whenever the size of the structure is truly static for a particular domain, design the
type as a constrained type.

• Design generic components to allow users to choose between accuracy and
efficiency.

• Performance-critical loops should not include any string-to-enumeration conversions.

Implementation • Looping structures should access arrays in row-major order.

• Use attributes wherever possible when unconstrained structures are necessary.

• Only use short-circuit control forms for performance reasons when the expression
contains function calls that have no side effects.

Maintenance • Modifications must address both the algorithmic and the data structure changes to
ensure that they both still match the problem.

21 SEL-95-001

viewed videotaped tutorials made by Alsys, Inc.,
during a concentrated 40-hour period in a classroom
setting where there was opportunity for discussion
facilitated by a university professor. Following this,
George Cherry, of Language Automation Associates,
presented a 24-hour seminar on the process
abstraction method design methodology. The final
step, the longest and most productive part of the
training, was hands-on coding of a practice problem
using DEC’s Ada compiler. The team spent 1336
staff hours developing an electronic message system
(EMS) (5700 SLOC). Although the EMS allowed
the team members to practice using Ada for standard
computer science operations, it did not provide an
opportunity to explore options for implementing the
types of scientific functions that are common in flight
dynamics software.

The GRODY team rated the discussions in the
training classes and team meetings and the EMS
practice problem to be the most helpful aspects of the
training. The chief drawback to the practice problem
was its size and simplicity. The team felt that a
smaller, more complex problem requiring the use of
packages and data abstraction would have been more
effective for their needs. The team also listed several
Ada features that were either difficult to grasp or
poorly covered during the training, including
input/output, tasking, generics, data types, and library
units and structures. The team recommended that in-
house experts prepare supplementary lectures to
augment the videotapes in these areas.

2.5.2 Project-Specific Training

The early Ada projects, including GOADA,
GOESIM, and FDAS, used project-specific training
where the team was trained as a group using a
combination of videotapes and locally prepared
lectures on topics such as library management, OOD,
data typing, and generics. Experienced FDD Ada
developers from the GRODY project served as the
trainers. This training was usually done on a part-
time basis during the requirements analysis phase of
the project. All currently assigned project personnel
as well as those scheduled to join the project during
design and implementation attended the training.

This training approach worked well during project
start-up, but had its drawbacks as the projects
progressed. When staffing changes became
necessary, typically during the implementation and
testing phases, no resource was available to train the
new people coming onto the project. This was a

significant disadvantage given that the entire pool of
available personnel (FDD FORTRAN developers)
had not yet been trained in Ada. The FDD needed a
way to gradually train its existing workforce outside
of the context of a specific project’s immediate
staffing needs.

2.5.3 Institutional Training

In 1988, the SEL developed and deployed its first
Ada language course. One of the FDD Ada experts
adapted the Ada language course that he taught at a
local community college for the FDD environment.
This course introduced the student to the Ada syntax
and the software engineering principles and good
practices that Ada supports. The course consisted of
two 1.5 hour lectures each week for 10 weeks with a
weekly hands-on homework assignment to reinforce
the learning. Students were selected based on interest
and high likelihood of being assigned to an upcoming
Ada project. This course was generally well-
accepted and interest in taking the course was very
high, particularly in the contractor organization,
where Ada was perceived to be an essential skill for
the future.

In late 1989, the FDD brought in an outside trainer
from another part of the contractor organization to
provide just-in-time training for a group of new
developers and managers. These people needed to be
trained as replacements for a large contingent of Ada
developers who had left the organization to staff new
projects. The training for managers consisted of
2 days of lecture. Developer training consisted of
2 weeks of full-time hands-on training. Both courses
received favorable evaluations, but were considered
expensive.

When the SEL began developing a full-scale training
program for FDD personnel in 1989, Ada courses
were a featured product. Between 1991 and 1992,
the SEL deployed this series of three Ada training
courses:

• Introduction to Ada–Teaches the syntax and
semantics of Ada and familiarizes the student
with FDD Ada development tools; a series of
12 lectures over 12 weeks with weekly home-
work assignments; taught by a professional
teacher with limited software experience.

• Object-Oriented Development in Ada–Teaches
Ada developers and managers the object-oriented
approach to software development; covering
object-oriented requirements specification, and

SEL-95-001 22

the analysis, design, implementation, and testing
of Ada software systems; discusses FDD case
studies; a series of 12 lectures over 6 weeks with
weekly homework assignments; taught by a
GSFC Ada expert.

• Project Implementation with Ada–Explains the
order and relationships of the techniques,
methods, tools, and products that are part of the
Ada software engineering process and practices
them on group projects; 6 sessions spaced out
over 2 months to provide time for practice
project development; taught by a contractor Ada
expert.

These SEL-sponsored Ada training courses had
mixed results. Course evaluation ratings ranged from

highly beneficial to awful. Analysis of the data
showed a high correlation between a student’s course
evaluation and his/her predisposition toward the
language and the local FDD instructors. This was the
first documented manifestation of what appeared to
be a significant developer bias against Ada (see
section 4.1 for more on this topic). As a result of the
negative course evaluations, the SEL reevaluated its
approach to institutional language training.

In the future, the FDD will use independent sources
such as vendors and local colleges to teach language
syntax and semantics, and in-house developed
courses will be used to focus on application of the
language in the local environment using the local
development process and tools.

23 SEL-95-001

Section 3. Quantitative Analysis

The success with which the FDD met its Ada
experimentation goals of increased software reuse,
lower development effort, shorter cycle times, and
greater software reliability was evaluated by
analyzing data from contemporaneous Ada and
FORTRAN flight dynamics projects.13 Previous
papers have documented improvements achieved on
Ada projects over the 1985 FORTRAN baseline.14

But, while the FDD was gradually maturing its use of
Ada for satellite simulators built on DEC VAX
minicomputers, the FORTRAN process used on the
larger, mainframe-based projects was also evolving
and improving.

This section compares the evolving Ada and
FORTRAN baselines between 1985 and 1994 in each
of the four experimentation goal areas (reuse, cost,
schedule, and reliability) and discusses the evolving
software process. It also presents a summary of the
results of quantitative analyses of data on language
feature use, process, and performance. Any improve-
ments seen on the Ada projects are assessed within
the context of the evolving FORTRAN baseline.
Since the preliminary SEL report on this study,2 new
data have been added for completed projects in both
languages, and the size and effort data have been
normalized to support a more accurate comparison
among projects in the two languages.

3.1 Project Data

The FDD delivered operational software to support
10 spacecraft missions from 1985 to 1994. Of these,
eight missions had at least one simulator built in Ada
on the VAX and an AGSS developed in FORTRAN
on the IBM mainframe computer. Data from all FDD
projects that produced operational software for these
eight missions were examined. In particular, the
series of corresponding telemetry simulators and
AGSSs from the same missions were analyzed to
assess the relative impact of using Ada and
FORTRAN.

For each language, projects were grouped according
to date (1985–1989 and 1990–1994), producing two
distinct analysis periods. This division into “early”
and “recent” projects occurs at a natural break in the
data that corresponds with a significant increase in
levels of reuse achieved and with changes in the local

development process. Results were also compared
with the existing SEL baseline from 1985. The com-
plete project data used in this analysis, as well as the
1985 SEL baseline measures appear in Appendix A.
Data for the MTASS/MSASS project are also
included in Appendix A. This project, established in
1990, maintains and enhances FORTRAN reusable
components in two controlled libraries to support
missions in the two spacecraft domains: multi-
mission three-axis-stabilized spacecraft (MTASS)
and multimission spin-axis stabilized spacecraft
(MSASS). (MTASS/MSASS is described in detail in
the discussion of reuse approaches in section 3.2.1.)

3.1.1 Size Measures

Software size is used in these analyses as a
normalizing factor when comparing productivity,
reuse, error density, and process effects. The tradi-
tional measure of software size in the FDD has been
source lines of code (SLOC), which counts every
carriage return in the source files, including blank
lines and comments. For this study, however, state-
ment counts were chosen (i.e., the number of logical
statements and declarations) because this count is not
sensitive to formatting and therefore provides a more
uniform indicator across the two languages both of
delivered functionality and of development effort
expended.15 The average number of physical lines
per statement varied over the period studied, because
of the evolution of programming style and comment-
ing conventions. Since 1985, the average number of
lines per FORTRAN statement grew from 2.5 to 5
due to increased commenting, whereas the maturing
Ada coding style caused the average number of lines
per Ada statement to shrink from 6 to about 3.

The oldest FORTRAN code included in the study
contained prologs that averaged from one-third to
one-half of the total size of each subroutine, and
consisted of about 20% to 30% inline comments. By
the midpoint of the study period (code written around
1989), both the prolog and the inline commentary had
grown so that the average number of lines per
statement had increased to about 3.5. This density is
representative of most of the reusable software in the
FORTRAN subsystem libraries (MTASS and
MSASS). Recent FORTRAN written using
Cleanroom methods has even larger prologs as well

SEL-95-001 24

as inline commentary equal to (or greater than) the
statement size, and it exhibits an overall expansion
ratio of about 5 lines per statement. Recent non-
Cleanroom FORTRAN exhibits a density of about
4.5 lines per statement.

On the other hand, the earliest Ada projects had
extensive commentary and vertical formatting which
inflated their size to an average of 6 lines per
statement. A more succinct style of about 4 lines per
statement had evolved by about the midpoint of the
study period, when most of the reusable generic
components were developed (for the UARSTELS
project). Most recently, there has been a further
increase in density, to about 2.5 lines per statement.
The main reason for this recent increase in Ada code
density was the decision to move much of the inline
descriptive documentation to external references.
This omission of most of the inline commentary in
any new Ada code was intended to encourage reusers
of the software to concentrate on understanding the
semantics of the interfaces rather than studying the
implementation details. The change was also
intended to prevent the insertion of project-specific

commentary into reusable software. Except for a
standard prolog, a style similar to the documentation
used for package Text_IO in the Ada Language
Reference Manual16 was chosen, where only brief
clarification is included as inline commentary and
any pertinent semantic details are contained in a
companion textual reference.

3.1.2 Language Feature Usage

A 1991 report on Ada language feature usage at the
FDD determined that Ada developers were
attempting to use the full capability of the language.13

The reported changes in language-feature use over
time indicate that the use of Ada evolved quickly and
then stabilized. Figure 4 shows four views of the
evolving language usage. The figure indicates that
the use of generics and strong typing increased,
whereas the use of tasking decreased along with the
average package size, indicators of more efficient use
of Ada features. This maturation appears to have
stabilized in recent years, suggesting that a standard
approach has been “defined” that is appropriate for
this environment and application domain.

0%

20%

40%

60%

80%

85/86 87/88 88/89 90/93

Generics

0.0

.02

.04

.06
Strong Type

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10
Package Size

85/86 87/88 88/89 90/93

85/86 87/88 88/89 90/93

85/86 87/88 88/89 90/93

Tasking

T
ot

al
 T

as
ks

 p
er

Sy
st

em

G
en

er
ic

 P
ac

k
C

ou
nt

 p
er

P
ac

k
B

od
y

C
ou

nt

K
SL

O
C

 p
er

P
ac

ka
ge

T
ot

al
 T

yp
es

 p
er

St
at

em
en

t

Figure 4. Maturing Use of Ada at the FDD

25 SEL-95-001

3.2 Reuse

During the time that Ada has been used in the FDD,
there has been a considerable increase in the reuse of
previously developed software on new projects. This
has been achieved on all FDD projects that have
applied object-oriented methods, regardless of
language. Figure 5 and Figure 6 show, for Ada and
FORTRAN projects, respectively, the percentage of
each project that was reused without change
(verbatim) from previous projects. The minimum
unit of reuse is a single compilation unit; no credit is
given if only a portion of a compilation unit is reused.
The percentages are computed by dividing the total
size of all compilation units reused verbatim by the
total delivered size of the project.

Figure 5 shows a large increase in verbatim reuse in
1989 when a set of Ada generics purposely designed
for reuse during the UARSTELS project was
demonstrated to be sufficient to construct nearly 90%
of EUVETELS, the subsequent project in the
telemetry simulator domain. This level was main-
tained for telemetry simulators until the POWITS
project (dip in the amount of reuse shown in
Figure 5), when a change in the domain required that
the Ada generics be modified and additional new

code be developed. Specifically, the original domain
where high reuse was achieved was simulation
software for three-axis-stabilized spacecraft. When a
spin-axis-stabilized spacecraft was simulated for the
first time, a substantial drop occurred in the verbatim
reusability of the library generics. This
incompatibility was rectified with the creation of
additional generics so that now the entire set can
accommodate either a three-axis- or a spin-axis-
stabilized spacecraft. The slight drop in the most
recent examples of reuse to around 70%, as compared
with the earlier successes that were closer to 90%,
was due to performance tuning on the latest projects.
Performance issues are discussed in section 3.7.

Figure 6 shows the corresponding picture of verbatim
reuse on the FORTRAN projects during the same
period. At its peak, the amount of verbatim reuse
achieved was nearly as great as with the reusable Ada
generics, and the first successes occurred at nearly
the same time as the first highly successful Ada
reuse. (The first high-reuse FORTRAN project,
EUVEAGSS, was the corresponding ground support
system for the same satellite mission as the first high-
reuse Ada simulator, EUVETELS.) Again, the
change in domain to spin-stabilized spacecraft caused
a drop back to the low levels of reuse observed on the

Project Name

Pe
rc

en
t V

er
ba

tim
 R

eu
se

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

G
R

O
D

Y

G
O

A
D

A

G
O

E
SI

M

U
A

R
ST

E
L

S

E
U

V
E

T
E

L
S

E
U

V
E

D
SI

M

SA
M

PE
X

T
S

PO
W

IT
S

T
O

M
ST

E
L

S

FA
ST

E
L

S

0%
4%

12%
17%

88%

21%

85%

39%

75%

64%

Figure 5. Verbatim Reuse Percentages for Ada Projects

SEL-95-001 26

earlier projects in the late 1980s. In the FORTRAN
case, however, the reusable components from the
three-axis domain were even less suited to the spin-
stabilized domain than had been the case with the
Ada components. This is shown by the even greater
drop in reuse on the FORTRAN ISTP system as
compared with the corresponding Ada simulator,
POWITS.

Before drawing conclusions from these data, it is
important to understand the different reuse ap-
proaches that have been used on FORTRAN and Ada
projects and to consider their effect on quantitative
data. The independent assessment team thoroughly
investigated the different approaches to reuse used in
the two languages to determine their influence on the
quantitative results. The detailed results of this
research and analysis are recorded in Appendix B.
The key findings of this study are discussed below.

3.2.1 Different Reuse Methods

The FDD used two different methods to manage
reuse on its Ada and FORTRAN projects. This
decision had more to do with the amount and
expected lifetime of the software being reused, than it
did with language. The AGSSs are very large and are
used for many years to support active spacecraft
missions; this makes strict, controlled management of
the reusable code common to all AGSSs very
important. Thus, the FDD chose to create a central
library containing the reusable FORTRAN AGSS
subsystems and to allocate a separate team to both
maintain it for all active missions and modify it to
support all new projects. Because of this, individual
AGSS project teams are only responsible for
developing new mission-specific subsystems, which
they execute in concert with selected standard
reusable subsystems to support a mission.

Project Name

Pe
rc

en
t V

er
ba

tim
 R

eu
se

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

G
R

O
SS

G
R

O
A

G
SS

G
R

O
SI

M

G
O

FO
R

G
O

E
SA

G
SS

U
A

R
SA

G
SS

U
A

R
SD

SI
M

E
U

V
E

A
G

SS

SA
M

PE
X

A
G

SS IS
T

P

T
O

M
SA

G
SS

FA
ST

A
G

SS
pa

rt
ia

l

12%

6% 7%

14%

5% 4% 4%

75%
81%

5%

75% 75%

Figure 6. Verbatim Reuse Percentages for FORTRAN Projects

27 SEL-95-001

Conversely, the Ada simulators are relatively small
with short operational lifetimes (on the order of
months–to support prelaunch testing); this makes
long-term configuration management a less important
concern. Thus, Ada projects employing reusable
components maintain and modify their own copy of
the reusable simulator software for each mission.

Table 5 summarizes the basic differences between the
reuse methods used on the FORTRAN and Ada
projects. It is important to consider these differences
when analyzing the quantitative data in order to
differentiate, as much as is possible, between the
effects of the reuse methods and the effects of using
different languages.

3.2.2 Adjusting FORTRAN Measures
to Compensate for Different
Reuse Methods

In Figure 5 and Figure 6, both languages appear to
have achieved equivalent reuse success. However,
because the SEL collects reuse data only from the
reusing project’s perspective, this picture is
somewhat misleading. The FORTRAN projects
report all the subsystems that are reused from the
MTASS/MSASS libraries as verbatim reuse, regard-
less of whether or not any units inside them need to

be changed or new units need to be added by the
separate maintenance team. On the other hand, the
Ada projects, having responsibility for all of the
software, provide a more accurate representation of
verbatim reuse by reporting the reuse status of all
individual units in the system. Likewise, the effort
data of the Ada projects reflects the entire cost of
reusing and modifying the generalized software as
well as the effort required to develop new mission-
specific components. But the FORTRAN project
data reflects only the effort required to develop the
mission-specific subsystems; the effort expended by
the separate software maintenance team to under-
stand, modify, and test the generalized reusable
subsystems to meet project requirements is reported
separately. Thus, the following adjustments must be
made when analyzing the data.

Adjusting for FORTRAN Library Maintenance
Costs

Because the high-reuse FORTRAN projects could
not have delivered their systems without the services
of the MTASS/MSASS library maintenance team, it
is necessary to include these hours when computing
the overall costs and productivities of the recent
AGSS projects. This adjustment provides a fairly
accurate basis for comparing the total development

Table 5. Ada vs. FORTRAN Reuse Methods

Factor FORTRAN Systems Ada Systems

Reusable source
code management
approach

Single library serves all development
projects and operational missions.

Each development project and operational
mission has its own copy of the reusable
source.

Generalization
approach for
implementing
reusable software

Package data and functionality together.
Use case statements to handle multiple
mission needs.

Use Ada generic packages to implement
parameterized logic that is instantiated for
specific mission at compile time via
parameters.

Reuse approach New mission-specific subsystems
communicate with reused executables
via data sets at run-time.

New and modified units are linked with
verbatim reused units to produce project
executable.

Personnel Separate, specialized team maintains
(modifies and tests) reusable code to fit
new mission requirements.

Project team develops new mission-
specific subsystems.

Project team modifies reusable code when
necessary and develops new mission-
specific components.

Change philosophy New mission requirements that affect
reusable subsystems are handled by
appending mission-specific ‘case’ logic to
generalized subsystems; existing code is
not touched if possible.

Rigorous regression testing is done.

Mission-specific requirements are handled
through parameterized generics.

When modifications are necessary, the
generic components are made more
generalized to handle the new requirements
also.

SEL-95-001 28

cost between languages and between the earlier and
later time periods.

On the other hand, when using the data to model the
cost of new, modified, or reuse-based development
from the project point of view, only the reported
mission-specific effort should be used. In this case,
no adjustments to the FORTRAN effort data are
necessary.

Adjusting verbatim reuse levels for
FORTRAN projects

To clarify the relative cost of reusing externally
maintained software vs. internally (project) main-
tained software, this analysis separates verbatim
reuse into two categories:

• Black-box reuse–Reusable software to which the
project team simply allocates requirements.
When necessary, a separate team enhances and
modifies the generalized subsystems to meet
those requirements; the reusable software is then
integrated with new mission-specific software
and tested. In other words, the project team
needs only to understand what the reusable
components do, not how they do it.

• White-box reuse–Software that is reused without
modification, but which the project team must
read and understand, as well as test with the
mission-specific software under development. In
other words, the project needs to both understand
what it does and how it does it well enough to
decide if it can or should be reused.

Separating the verbatim reuse in this way allows a
better approximation of the overhead involved in
learning, understanding, integrating, and testing
software that can be reused without change. It also
provides a more equivalent basis for comparing the
cost of verbatim reuse across the languages.

3.2.3 Software Size Differences Due
to Generalization Approach
and Language

The verbatim reuse percentages reported in the
project data give the impression that the two
languages are equally able to express generalized
functionality. However, further investigation
revealed significant differences in the structure of the
reusable code and the software change philosophy
used depending on the language used.

The Ada reusable architecture makes extensive use of
Ada generics to provide generalized packages and
procedures, which are instantiated to create mission-
specific code during compilation. Because some of
the generics are used repeatedly within the reusable
software, the net effect was a 25% decrease (for a
compression factor of .75) in the size of the code
required to implement equivalent functionality when
compared with earlier single-purpose mission-
specific Ada code.* The FORTRAN reusable sub-
systems similarly used object-oriented techniques to
encapsulate data and functionality into reusable
components, however, the generalization was
provided using parameterized case statements to
determine (at run-time) which code to execute for a
particular mission. Specific code was provided for
each individual case. The FORTRAN type of
generalization caused the reusable code size to grow.
For example, an analysis of the MTASS generalized
subsystems showed that they increased in size
between 10% and 40% when compared with
subsystems expressing similar functionality in earlier
mission-specific systems; this indicates an expansion
average of about 25% (or a factor of 1.25).

The maintenance approach for the reusable software,
which is driven both by language and generalization
approach, also affects software size. FORTRAN
libraries must be continually augmented to handle
new missions in their respective domains. It is the
practice of the FORTRAN maintainers to augment
the subsystems as necessary by adding code for any
new requirements rather than by generalizing or
modifying the existing code. This approach is more
straightforward given the limitations of FORTRAN
and it also avoids the risk of introducing errors for
existing clients. However, this also causes the
FORTRAN libraries to grow over time. For
example, the MTASS subsystems used in both the
EUVEAGSS and TOMSAGSS have grown by nearly
10% while under maintenance. Conversely, the Ada
generics form a set of smaller components that
requires little or no further modification to handle

*This figure is computed by first assuming that it took 15K
statements of reusable UARSTELS code to deliver 110%
of the GOESIM functionality, which required 18K
statements. Therefore, it is expected that 110% of the
GOESIM function would require 18K * 1.1 or 19.8K
statements, compressing Ada-to-FORTRAN reuse to
15:19.8K or nearly .75:1. This contradicts the longstanding
notion in the FDD that software size increases
proportionally to functionality.

29 SEL-95-001

missions in either domain. The Ada developers
directly handle the generics needed for each project
and further generalize them only when necessary
(such as by deleting unnecessary dependencies
between components). Thus the size of the reusable
Ada software remains roughly constant.

These size differences have the following implica-
tions:

• The generalized FORTRAN systems are on the
average 25% larger than previous systems that
provide similar functionality. This was
considered when productivity measures were
examined for this analysis. Combining the
FORTRAN expansion ratio of 1.25:1 and the
Ada compression factor of .75:1 results in a net
difference of 1.5:1 between FORTRAN and Ada
generalized software size.

• The large, and continually growing, size of the
FORTRAN reusable library increases the cost of
maintaining it. While 3.5K hours were required
to enhance MTASS for SAMPEX (in 1991–
1992), it cost between 5K and 6.5K hours per
mission to enhance MTASS/MSASS for use by
four mission systems in late 1992 through 1994.

3.2.4 Impact of Different Reusable
Software Management
Approaches

The maintenance and configuration control risks
associated with maintaining separate copies of the
reusable components in each client project’s library
never manifested on the Ada projects. It is
impossible to determine from the data available
whether the Ada language was influential in
minimizing these risks, or whether it was due to the
small size and short lifetimes of the Ada systems.

The use of single, centralized copies of the library
subsystems for the FORTRAN projects and not for
Ada projects introduced a mismatch that complicates
direct comparison of the effort measurements for the
two languages. However, the resulting data do
provide some insight into the effort required to learn
and modify the reusable software. Because the
individual application programmers for each
FORTRAN project do not have to concern them-
selves with the internals of the reusable subsystems,
none of their effort is spent learning the reusable
software. The Ada projects, on the other hand, have
the burden of directly handling the reusable software,

which means that Ada developers, with neither a
library support team nor comprehensive documenta-
tion (as yet), must study the internals of the reusable
components to understand their proper use and to
determine if any enhancements are needed. The
additional cost of the learning curve required to reuse
software on the Ada projects can be seen when reuse
is broken out into the “white-box” and “black-box”
categories defined in the discussion of different reuse
methods (in section 3.2.2).

3.2.5 Computing the Productivity
of Reuse

Conventionally in this environment, reuse is
classified as either verbatim reuse or reuse with
modification. Using the technique developed by
Bailey,17 individual productivities of the different
categories or modes of code development/reuse in the
FDD were estimated by deriving a set of
simultaneous equations and then solving for the
unknown productivities (see Appendix B). The effort
for each project was expressed as the sum of the
efforts to develop the various amounts of code in
each category (new, modified, verbatim).

The best overall solutions for the productivities for
new, reused with modification, and verbatim reuse
for both Ada and FORTRAN code are shown in
Table 6.

Table 6. FORTRAN and Ada Development
Productivities*

Category of Code Reuse FORTRAN Ada

New Code 1.2 1.1

Reuse with Modification 2.4 1.2

Verbatim Reuse 5.5 5.0

*Statements per hour

In Table 6, the productivities for both languages are
nearly identical except for the “reuse with
modification” category, where the FORTRAN
productivity is double that of Ada. This could
indicate that FORTRAN units are easier to modify
than Ada units. However, this analysis concludes
that the difference actually reflects the learning curve
required for reusing generic Ada code. When a
project team needs to modify a part of the reusable
software, additional effort is required first to
understand the code and its applicability, and then to
generalize it further to ensure future reusability.

SEL-95-001 30

Separation of the verbatim reuse category into black-
box and white-box reuse for the later FORTRAN
AGSS projects where MTASS and MSASS were
used yielded a more stable and well-behaved set of
productivity estimates for the development modes.
As one might expect, the productivity for the new
black-box verbatim reuse category was very high.
Depending on the group of projects included in the
solution, some of the analyses showed it to be
essentially “infinite” (meaning that black-box
statements can be “developed” for free, so the size of
the reused components has little or no effect on the
reusing project’s cost). This means that produc-
tivity values for the other categories would be
unaffected even if the black-box verbatim statements
were eliminated from the project totals.

The productivities for the development/reuse
categories with the addition of black-box verbatim
reuse are shown in Table 7. There is no software in
the black-box verbatim reuse category on the Ada
projects.

Table 7. FORTRAN and Ada Development
Productivities* Including Black-Box Reuse

Category of Code Reuse FORTRAN Ada

New Code 1.2 1.1

Reuse with Modification 2.4 1.2

White-Box Verbatim Reuse 4.0 5.0

Black-Box Verbatim Reuse 21.0 N/A

*Statements per hour

Reuse-library-supplied statements were included
because the current reporting style is to include them
in project totals. However, in the future it might
make more sense to exclude them from project
development estimates and reported sizes, analogous
to the way the size of a math library is ignored. It
would still be important to budget for the library
maintenance task, however, and to understand that
library maintenance remains an additional cost of
delivering FORTRAN AGSS projects. Eliminating
the reporting of the FORTRAN library software
which masquerades as zero-cost verbatim reuse
would also bring the Ada and FORTRAN reuse
factors more in line with one another (see discussion
of cost reduction in section 3.4).

3.3 Process Evolution

An evolving development process had as much to do
with the improvements in productivity as the
increases in software reuse. Without the support of
an appropriate process, reuse techniques alone would
not have led to the improvements observed. The
software process is characterized by examining the
distribution of effort across the various software
development activities performed. Life-cycle activity
categories include design, code, test, and “other”
(e.g., management, meetings, system documentation).
Figure 7 shows the average activity distributions for
all Ada and FORTRAN projects during the study
period. The figure shows the average percentage of
staff-hours per project consumed by each activity for
software projects at the FDD.

Pe
rc

en
t E

ff
or

t p
er

 A
ct

iv
ity

21%

22%

23%

24%

25%

26%

27%

Design Code Test Other*

27%

24%

23% 23%

25%

26%26% 26%

Ada

FORTRAN

*e.g, meetings, management, documentation

Ada and FORTRAN Activity Distribution

Figure 7. Activity Distribution: All Ada vs. all FORTRAN Projects

31 SEL-95-001

Project history reports document the fact that the
software process was changing throughout the Ada
study period, as seen in Figure 5 and Figure 6. These
figures clearly show the points when dramatic
improvements in reuse were achieved in both the Ada
and the FORTRAN projects. The first Ada simulator
and the first FORTRAN ground system to exhibit
high reuse were both written to support the EUVE
mission. Because of the nature of satellite mission
support, the simulator is typically completed first so
that it can be used to test the ground system. (In the
case of EUVE, the Ada simulator was completed
about 4 months ahead of the corresponding
FORTRAN ground system.) Because these first
successes with reuse almost coincided, and because
they are associated with measurable changes in the
development approach, the inclusion of Ada and
FORTRAN projects in the “early” or “recent” set
depends on whether they were completed before or
after the EUVE experience. This formed a conven-
tional reuse set and a high-reuse set of projects
in each language.

The differing shapes of the early and recent activity
distributions shown in Figure 8 illustrate that the
more recent, high-reuse Ada projects have been, in
fact, conducted using a different process than the
early projects. The light bars for each activity show
the averages for the first five Ada simulator projects,
and the dark bars show the average effort per activity

for the five recent Ada simulators that achieved
higher levels of reuse. In both cases, the percentages
are based on the average total effort for projects in
the early set to more dramatically demonstrate the
savings realized on recent projects relative to those
earlier projects.

Because savings were apparent in each of the
activities, it was concluded that the savings exhibited
for the recent project set is not due to code reuse
alone but also to the process change that came about
as a byproduct of that reuse. Some of the process
changes include requirements specifications
expressed in terms of specific earlier system
functionality, compression of PDR and CDR into one
review, and reuse of baseline documentation.

Figure 9 shows the average effort by activity for the
FORTRAN projects that were completed during the
same period. Again, the projects are divided into an
earlier group of lower reuse projects and a more
recent group of higher reuse projects, and the
percentages are all based on the average early project
effort. As with Ada, a reduction in effort is shown
for each activity when comparing low reuse with
high reuse, although the net reduction is less in
FORTRAN. Unlike the Ada results, however, most
of the FORTRAN reduction occurs in the coding
activity instead of being spread more evenly across
the life cycle.

Ada Projects: Early and Recent Activity Distributions

Pe
rc

en
t o

f
Pr

oj
ec

t E
ff

or
t

0%

5%

10%

15%

20%

25%

30%

35%

Design Code Test Other*

21%

28%

24%
27%

18%
20%

28%

33%

Early

Recent

*e.g., meetings, management, documentation

Figure 8. Activity Distribution for Ada Projects

SEL-95-001 32

The shape of the activity distribution of the early
projects in the FORTRAN set (light bars in Figure 9)
is virtually identical to the activity distribution of the
early projects in the Ada set (light bars in Figure 8).
On the other hand, the distributions for the recent
high-reuse projects differ between the languages.
This suggests that the Ada and FORTRAN processes
have each evolved in a different way even though
they share a common ancestry. The main lessons
from this illustration are that the software process
matured and improved during the Ada exploration
period and that this evolution affected both the Ada
work and the FORTRAN work, although in different
ways. Discussions later in this section will show that
these process changes are also associated with a
reduction in overall project cost and shortening of
schedules.

The process changes associated with higher reuse in
both languages were originally suggested by the
developers themselves. After their initial experiences
with Ada reuse and OOD, two of the chief software
engineers documented their approach to capture this
experience and to enable it to be more widely used by
the organization.5 This document, released in 1986
after only about 1 year of Ada experience, formed the
underpinnings for the ultimately successful reuse

techniques that took almost another 4 years to come
into practice with the UARS and EUVE missions.

In 1990, when the use of generalized software was
first shown to be possible in both Ada and
FORTRAN, it became clear to the developers that the
cost advantages of large-scale reuse could not be
realized unless the software development process
were pared down correspondingly. There were
further latencies in institutionalizing these changes,
however. As was noted, the EUVE projects in both
Ada and FORTRAN reused large amounts of the
prior UARS projects. However, a risk-reducing
management decision was made to allow sufficient
time and budget for the EUVE projects to be
completed in a conventional fashion. It was not until
the following pair of projects, for the SAMPEX
mission, that the schedule and the process were
actually redefined and streamlined for high reuse.
Formal documentation of this new process took
another 2 years.3 The overall latency from the first
attempts to incorporate reuse technology into the
development process, to the adoption and formal
documentation of a reuse-based process was about
8 years: 5 years to develop a reuse technology
(1985–1990); 1 year to demonstrate its effectiveness;
and 2 years to practice it, refine it, and document it.

FORTRAN Projects: Early and Recent Activity Distributions

P
er

ce
nt

 o
f

P
ro

je
ct

 E
ff

or
t

0%

5%

10%

15%

20%

25%

30%

35%

Design Code Test Other*

21%

28%

25% 26%

33%

17%

26%
23%

Early

Recent

*e.g, meetings, management, documentation

Figure 9. Activity Distribution for FORTRAN Projects

33 SEL-95-001

3.4 Cost Reduction

The average cost to deliver a statement in each
language was calculated, again adopting the
distinction between conventional-reuse projects and
high-reuse projects–respectively, those before and
after the EUVETELS project. The left-hand side of
Figure 10 shows the average cost in hours to deliver a
statement of Ada, both for the early project set and
the recent project set. The figure shows that the net
productivity of delivering Ada software has doubled
since high reuse has been achieved.

The right-hand side of the figure shows the average
cost in hours to deliver a statement of FORTRAN
before and after the high-reuse process. Again, there
is an improvement, though not as great a reduction as
in the Ada projects, particularly when the effort of
the library maintenance task is computed in the total.

As recommended in section 3.2.3, the effort spent by
the MTASS/MSASS library maintenance team is
included in the overall cost to deliver high-reuse
FORTRAN systems. The lighter of the two “recent
FORTRAN” bars indicates the average cost per
statement on the projects without the MTASS/

MSASS contribution. The total cost, including costs
for the maintenance of the independent FORTRAN
reuse libraries (shown in the darker of the two bars),
were computed using the total number of hours spent
on all projects in each set plus, in the case of the
recent FORTRAN projects, the library maintenance
hours spent doing enhancements during the time
period when each respective project was under
development. The adjusted effort was divided by the
total number of statements delivered on all applica-
tion projects in each set to estimate the average cost.

The change in the cost shown to deliver the most
recent FORTRAN projects reveals that, due to the
overhead of maintaining the reuse libraries, there has
been less net improvement in the efficiency of
FORTRAN development since adopting the high-
reuse process. This suggests that, although
FORTRAN is probably more cost effective for
building short-lived, single-use software, Ada is
preferable for software that is likely to have a longer
life through future reuse.

The effect on code size when expressing general
software in each language also must be taken into
consideration when using statement counts to

H
ou

rs
 p

er
 D

el
iv

er
ed

 S
ta

te
m

en
t

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Early
Ada

Recent
Ada

Early
FORTRAN

Recent
FORTRAN

0.42

0.65

0.41

0.86

0.48

Hours per Delivered
Statement

Including Reuse
Library Task Hours

52% reduction 35% reduction

26% reduction

Figure 10. Average Effort to Deliver a Statement

SEL-95-001 34

compare productivity. As discussed in section 3.2.3,
the generalized portions of the FORTRAN code were
larger than the comparable single-purpose solutions.
Conversely, the Ada projects that incorporated the
reusable generics were somewhat smaller than the
earlier similar projects. The net difference between
the two languages, which may be as much as 1.8 to 1,
means that the effective cost for Ada (based on
functionality delivered) is actually lower than that
shown above, whereas the effective cost for
FORTRAN is actually higher. Adjusting for the Ada
size compression factor of .75:1 and the
corresponding size expansion factor of 1.25:1 for the
generalized parts of the FORTRAN systems (see
section 3.2.3) results in a more accurate picture of the
change in cost due to high reuse in each language.
Figure 11 shows the cost of delivering comparable
functionality between the early project set and the
recent project set for both Ada and FORTRAN. This
indicates that, in terms of functionality, FORTRAN
development costs have decreased only slightly,
whereas Ada costs have come down by one half due
to high reuse.

The current model used in the FDD for estimating the
cost of reuse was developed based on empirical data

available in 1993.11 It specifies that development by
reuse in FORTRAN costs about 20% of the cost of
new code development, but that reuse in Ada costs
about 30% of the cost of new code. These figures are
the “reuse factors” for each language, which can be
multiplied by the new code development costs to
estimate the cost of delivering reused software. This
model suggests that it costs 50% more to reuse Ada
over FORTRAN from the reusing project’s point of
view.

The findings in this report suggest that the apparent
advantage that FORTRAN reuse has over Ada reuse
is created by the highly productive black-box
verbatim reuse used on FORTRAN projects, which is
not available to the Ada projects. The cost of the
separate task which offloads the actual expense of the
black-box code (i.e., the effort to understand and
modify the FORTRAN utility subsystems), is not
included in these reuse cost estimates because it is
funded separately and available to all FORTRAN
AGSS projects. However, because the separately
funded cost of maintaining the reusable libraries
raises the true cost of the FORTRAN projects in a
way that is not reflected by these models, the reuse
cost factors are not directly comparable.

Hours per Statement Adjusted by Function Delivered

Ada vs. FORTRAN, Early (low reuse) vs. Recent (high reuse) Projects

H
ou

rs
 p

er
 F

un
ct

io
na

l S
ta

te
m

en
t D

el
iv

er
ed

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Early
Ada

Recent Ada Early
FORTRAN

Recent
FORTRAN

0.86

0.33

0.65
0.59

Figure 11. Average Effort to Deliver Similar Functionality

35 SEL-95-001

A better way to look at the relative costs of reuse in
the two languages is to consider the ratios of
productivities between new and reused code in each
language, as was done in section 3.2.5. These ratios
appear to be nearly identical (except for reuse with
modification, where, in the FORTRAN case, a
separate team performs the modifications, and
productivity rates diverge accordingly), which
suggests that similar reuse processes result in similar
productivity levels, regardless of language. In fact, it
even appears that the per-line productivities are
comparable between the languages, which should
further simplify future cost models.

3.5 Schedule Compression

In addition to lowering cost, Ada and reuse were also
expected to lead to shorter cycle times or project
durations. Figure 12 shows that this goal was met not
only by the Ada projects but also by the FORTRAN
projects. Again, the right-hand bars represent the
“recent” projects, or those that achieved high reuse
levels. Because this is a schedule comparison, no
adjustment is needed to compensate for the
MTASS/MSASS effort. The division of labor and
reduction in communication that is made possible by

having these separate teams, however, is likely to be
responsible for shortening the recent FORTRAN
development schedules. Because the FORTRAN
AGSSs and the Ada telemetry simulators are affected
by different external forces, a cross-language
comparison of cycle time makes no sense. But a
comparison of the early and recent project groups in
each language shows improvement.

The software development process did not change
immediately with the advent of high reuse, however.
As mentioned in the discussion of process, the
schedule for the first high-reuse project in each
language was more similar to those of the early
projects than it was to those of the recent, high-reuse
projects. Change in the overall development process
occurred only after the EUVE project demonstrated
that substantial savings could be achieved through
large-scale reuse. When management was able to
observe the potential savings from reuse, procedural
and scheduling changes were made to allow an
expedited development process whenever high reuse
was possible. Reuse can permit shortened project
schedules, but it is necessary to accommodate this
different scenario with an appropriately pared-down
process. See section 3.3 for a discussion of these
process changes.

A
ve

ra
ge

 D
ur

at
io

n
in

 M
on

th
s

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Recent Ada Early
FORTRAN

Recent
FORTRAN

27.4

15.2

30.0

22.545% reduction

25% reduction

Early Ada

Figure 12. Average Project Duration

SEL-95-001 36

3.6 Reliability

The last explicit goal for the planned Ada transition
was to increase the quality of the delivered systems.
The density of errors discovered during development,
which is measured on all FDD projects, was used to
represent system quality and reliability (there was
insufficient operational data to conduct a reliability
analysis). Development-time errors are a useful
indication of quality because they reveal the potential
for latent undetected errors and indicate spoilage and
rework during development.

The number of errors discovered per thousand state-
ments of new and modified software before delivery
is shown in Figure 13. The densities shown are based
on only the new and modified code (verbatim reused
code was not included in the denominator), so these
reductions cannot be attributed to reuse. Instead, the
reduced error rate is attributed to improvements in
the development process that were instituted on all
FDD projects during this period. These improve-
ments included the use of object-oriented or
encapsulated designs and the use of structured code
reading and inspections. The fact that these process
improvements were applied to projects in both

languages is reflected by the similarity in the error-
density reductions observed. The error density
reductions were significant at the .01 level for both
languages (using a two-tailed Student’s t-test).

3.7 Performance

System performance was not an explicitly stated goal
for the programs developed in Ada, but it turned out
to be a major issue. By 1985, the programmers in the
FDD had achieved such proficiency with FORTRAN
software design and implementation that even the
most complex flight dynamics systems performed
adequately without any special attention being paid to
performance issues during design. Thus, perform-
ance had become an implicit expectation and was not
addressed in software requirements, designs, or test
plans.

Figure 14 depicts the relative response times of the
delivered simulators between 1984 and 1993, where
the response time indicates the wall-clock time
required to simulate an interval of data (hours
responding per hour of data). A smaller response
time indicates better performance. The figure reveals
that the first Ada simulator performed very poorly

Ada vs. FORTRAN, Early vs. Recent (improved process) Projects

E
rr

or
s

pe
r

T
ho

us
an

d
N

ew
 o

r
M

od
if

ie
d

St
at

em
en

ts

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Early Ada Recent Ada Early
FORTRAN

Recent
FORTRAN

10.5

5.4

11.1

6.8
49% reduction

39% reduction

Figure 13. Error Densities on Early and Recent Ada and FORTRAN Projects

37 SEL-95-001

compared with predecessor FORTRAN simulators.
Because Ada language benchmarks had shown that
Ada executed as fast as equivalent FORTRAN
programs and because performance was not an
explicit goal, developers of the first Ada project paid
little attention to performance. Instead they focused
on learning the language and developing reusable,
object-oriented software. Predictably, as novice
users of this fairly complex language, they did not
produce an optimum design or implementation. But,
their system was delivered for operational use, so the
FDD users’ first encounter with an Ada system was
negative. This impression was accentuated by the
fact that, because of scaled-down processing
requirements, the FORTRAN simulator delivered
immediately before the first Ada simulator was the
fastest simulator ever delivered in this environment.

In retrospect, it appears that attempts to maximize use
of OOD while lacking extensive experience with the
technology probably contributed more to the initial
poor performance than did Ada. This points to a
basic flaw in the approach taken to the evaluation of
this new technology: Conflicting goals had been
established for Ada by combining its study with the
use of OOD. It was then difficult to separate the

effects of the language from the effects of OOD
techniques, resulting in the language being faulted for
the run-time overhead caused by data access
procedures and by multiple layers of abstraction.

In addition to the overhead from OOD, the 1990 Ada
performance study8 revealed that some of the coding
techniques practiced in FORTRAN to achieve high
efficiency actually worked against efficiency in Ada,
and that some of the data structures around which the
designs were built were handled very inefficiently by
the DEC Ada compiler. The study resulted in a set of
Ada efficiency guidelines9 for both design and code,
which are now being followed for all new Ada sys-
tems. Interestingly, to comply with those guidelines,
the last two Ada projects in Figure 14 had to forgo a
certain amount of reuse (compare with Figure 5).
(The slower POWITS simulator was completed
before these guidelines were available and it also had
considerably more complex processing requirements
as well as other complications.)

As shown in Figure 14, a typical Ada simulator now
performs better than most of the earlier FORTRAN
simulators. First impressions are very important,
though, and some FDD programmers and users still
hold the perception that Ada has performance

Simulator Response Times Relative to Real Time

H
ou

rs
 C

lo
ck

 T
im

e
/H

ou
r

Si
m

ul
at

ed
 T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

G
R

O
SI

M

C
O

B
SI

M

G
O

FO
R

G
O

A
D

A

G
O

E
SI

M

U
A

R
ST

E
L

S

E
U

V
E

T
E

L
S

SA
M

PE
X

T
S

PO
W

IT
S

T
O

M
ST

E
L

S

FA
ST

E
L

S
1.5

0.5

0.1

2.0

0.3 0.4 0.4

0.1

2.0

0.1
0.2

FORTRAN Ada

Figure 14. Performance Times of Ada and FORTRAN Simulators

SEL-95-001 38

problems and that systems demanding high
performance should not be implemented in Ada.
Recent impressions have been more favorable toward
Ada, however. These impressions are discussed in
detail in section 4. In fact, subjective data collected
about Ada simulator performance (analyzed in
section 4) reveal that those with recent Ada
experience have no complaints about performance.
Another indication that performance is no longer an
issue is that performance benchmarks are no longer
run for the Ada products, although current perfor-
mance requirements are more demanding.

3.8 Summary of the
Comparisons

The quantitative data gathered over the past 10 years
show clear improvements attributable to the use of
the Ada language in all of the initially specified goal
areas. Many of these improvements were directly
related to a considerable increase in reuse. Although
the FORTRAN systems gave the impression of

comparable results over the same period, the cost
savings from reuse were considerably lower in
FORTRAN when the added cost of maintaining the
reuse libraries was factored into the net delivery
costs. Further, the expansion of statements per unit
of functionality needed in the high-reuse FORTRAN
projects further offset the apparent gains in
productivity as measured simply by the size of the
delivered product.

With respect to improvements in schedule and error
density, Ada and FORTRAN performed comparably.
The initial disappointments with Ada with respect to
performance were subsequently eliminated through
analysis and by the adoption of performance-
sensitive Ada design guidelines.

Therefore, the study found no quantitative evidence
to indicate that the Ada language can not be used
successfully for all FDD projects. In fact, the data
show every indication that Ada is a good choice for
increased usage on more FDD systems, particularly
larger, longer-lived, highly reusable systems.

39 SEL-95-001

Section 4. Qualitative Analysis

Despite the promising quantitative results that
accrued from the use of Ada, the adoption of Ada at
the FDD was slower, more difficult, and less wide-
spread than expected. As is often the case with
technology infusion, several external and internal
subjective factors impeded the FDD’s transition to
Ada. Factors such as the limited availability of Ada
compilers and tools, negative feedback from the users
of the developed systems, and an adverse and
vehement minority opinion within the software
development organization all had detrimental effects
on the adoption of Ada. This section discusses these
factors and their impacts on the goal of transitioning
to Ada.

4.1 Vendor Tools and Support

Finding adequate vendor tools to support Ada
development in the FDD was a major obstacle. In
1985, when the FDD began its work with Ada, most
computer vendors were either actively developing
Ada compilers and development environments or had
announced plans to do so. The FDD believed that,
within a few years, vendor tools would be widely
available for Ada. But, consistently usable Ada
development environments and reliable Ada com-
pilers never became available across the platforms
used at the FDD to develop and execute software
systems.

With only one small exception, all the Ada projects at
the FDD were developed using DEC Ada on VAX
minicomputers. The DEC/Ada products available on
the VAX platforms were rated by FDD developers as
being sufficient to enable viable Ada development.
However, 80% of the software developed in the FDD
must execute on the standard operational environ-
ment, which is an IBM mainframe. Traditionally,
FDD systems have been developed on their target
platforms because this simplifies testing and
deployment. Unfortunately, an adequate Ada
development environment was never found for the
IBM mainframe.

In search of a solution to mainframe development,
the FDD conducted three studies between 1989 and
1992, all of which declared the IBM mainframe
environments unfit for Ada software development or
deployment. In 1989, the FDD evaluated three

compilers18 and selected one for purchase and further
study. Somewhat discouraged by this study, which
rated the best compiler as having only marginal
performance for flight dynamics computations and no
development tools, the FDD investigated an
alternative approach.

Because Ada was touted to be highly portable, the
FDD conducted an alternative portability study to
determine whether systems could be developed in
Ada on the VAX and then transported to the
mainframe for operational use. This study (discussed
in section 2.4.3) ported one of the existing
operational Ada simulators from the VAX to the IBM
mainframe using the Alsys IBM Ada compiler,
version 3.6. The study found that relatively few
software changes were required and that the resulting
system performed adequately on the mainframe, but
that rehosting was extremely difficult because of
compiler problems and the lack of diagnostic tools
and library management tools. Although rehosting
the system required only a small amount of effort, it
took nearly as much calendar time as was needed to
develop the system from scratch, due to the problems
encountered.

An alternate approach would have been for the FDD
to purchase the Rational Ada Environment, which
would have allowed development of Ada components
specifically tailored for IBM mainframe compilation.
This cross-targeting strategy, developed by Rational
to solve many of the problems associated with
delivering Ada software on mainframes and other
platforms with inadequate Ada environments, would
have involved purchasing additional hardware as well
as software tools and licenses. Given that the VAX
provided a viable Ada development environment, the
FDD did not seriously consider converting to the
Rational development environment. Additionally,
the cost to use Rational in 1991 would have come to
about $35K in hardware and software per seat, an
amount which the FDD deemed excessive.

In the fall of 1992, the FDD again conducted a
compiler evaluation on what were supposed to be
greatly improved products. This study19 used the
ported simulator as one of its benchmarks and ended
up selecting a different compiler than the earlier
study. Although the chosen compiler performed
better than other candidates and was accompanied by

SEL-95-001 40

a modest tool set, the study warned against using it to
develop real-time or large-scale FDD systems
because of its inefficient compiling and binding
performance, immature error handling, and poor
performance of file input/output. Only in late 1993
did the FDD achieve some limited success
developing a small utility in Ada (the FAST General
Torquer Command Utility*) on an IBM RS-6000
workstation and then porting and deploying the
software on the mainframe. This approach to
developing Ada systems for mainframe operation is
the first to show any real promise. In addition, this
has been the only instance of Ada software
development on a workstation platform. While the
FDD had hoped to begin earlier investigating the
appropriateness of using workstations to develop and
execute Ada systems, the cost of suitable software
development environments on workstation platforms
has been prohibitive.

In addition to its disappointment with the mainframe
development environments, the FDD also
experienced only qualified success using Ada to
develop an embedded system. The FDD’s R&D
effort to develop an embedded application on a Texas
Instruments 1750A machine using the TARTAN Ada
compiler led to interface problems between the
hardware and software. Ultimately, the lack of
diagnostic tools contributed to insoluble problems
that resulted in an end product with reduced
capability (discussed in detail in section 2.3.1). This
experience added to the general feeling among FDD
developers that the level of vendor support available
was unsatisfactory for viable Ada development.

4.2 Ada Perspectives Within
the FDD

Technology transfer of any software engineering
technology involves people: users, software
developers, and managers. The introduction and
usage of Ada within the FDD sparked much
controversy. The independent assessment team
sought to determine the impact of the Ada technology
on the people of the FDD and to understand the
degree to which the attitudes of the various groups
impeded or facilitated the infusion of Ada in the

*This FDD Ada product is not included in the project data
analyzed for this report. It is a unique entity in this
environment in that it is an AGSS subsystem written in
Ada; therefore, it did not fit into any of the defined project
sets.

FDD. This section presents the key findings from
interviews and surveys conducted during the
independent assessment.

4.2.1 User Perspective

As mentioned in section 2, the SEL conducted a
performance study in 1990 largely because feedback
from the user community indicated that the Ada
systems were not as fast as their FORTRAN
predecessors, and were therefore unacceptable. A
survey of 18 users taken in late 1991 showed that
performance ideals varied considerably among the
users of the satellite simulators. Performance goals
ranging from one-quarter real time to 15 times real
time were cited by the users, with the most frequently
cited performance goal being at least real time (where
the simulation of 1 hour of data takes 1 hour of wall-
clock time). Most of the recent Ada simulators have
exceeded this goal; however, when the 1991 survey
was taken, only SAMPEXTS, with a simulation
speed of about 3:1, clearly exceeded the
1:1 benchmark. Although the users realized that the
complexity of a simulation and the speed and avail-
ability of the hardware also affected performance,
most blamed the simulators’ poor performance on the
Ada language itself.

More recent feedback from the users of the Ada
telemetry simulators has been entirely favorable.
Performance results ranging from 5 times real time to
as much as 15 times real time are now being reported.
In fact, performance is no longer even considered an
issue to the users of the Ada simulators. One
indication of this is that no performance benchmarks
have been run or requested for quite some time.
Likewise, interviews with the AGSS testers and
mission-support users, who use the simulators for
prelaunch testing of the AGSSs and, occasionally, for
testing of emergency repairs during mission support,
did not yield any complaints about the performance
of recent Ada simulators. The users have also stated
that changes to the Ada simulators have been easy to
specify and obtain. They routinely participate in the
analysis of changes recommended to accommodate
new requirements.

This current situation with respect to the usability and
performance of the Ada simulators is in stark contrast
with the situation reported even as recently as 1992.
In fact, a major motivation for conducting the
independent assessment was to determine the future
course of action to address the problems encountered
using Ada at the FDD. Apparently, the efforts of the

41 SEL-95-001

software developers to focus on and improve
performance of the TOMSTELS and FASTELS
simulators in particular was well worth the sacrifice
in reuse.

4.2.2 Developers’ Perspective

During the past 2 years, the independent assessment
team conducted two surveys to gather insight into the
perspective of the software development staff. The
first survey addressed those developers who had
direct exposure to Ada, those who either used Ada on
the job or attended Ada training, to measure their
attitude about the language. The second survey,
which addressed the total FDD software development
population, measured how each respondent felt about
the future of Ada in the FDD. Both provided insight
into the overall impact that the introduction of the
Ada technology has had on the people in this
organization. Key findings from the analysis of these
survey results are presented in this section. The
survey forms are included in Appendix C.

The first survey gathered information from 35 FDD
developers who had been trained in or had developed
systems in Ada. Developers were asked which
language they would choose for the next simulator
project, which language they would choose for the
next ground support system, and why. Figure 15
shows the sum of their responses.

Most agreed that Ada should be used for the next
simulator, but that FORTRAN should be used for the
next ground support system, citing the availability of
reusable components and architectures as the
deciding factors. But, significant minorities in each
case recommended use of the language not
customarily used for each type of application. The
23% who preferred to use FORTRAN instead of Ada
for simulators cited the complexity of the Ada
language and poor performance as reasons to
abandon Ada, while the 30% who preferred to use
Ada instead of FORTRAN to build the next ground
support system felt that Ada was a better language for
building larger systems. Interestingly, several of the
developers did not care one way or the other about
which language they used for software development,
with two developers specifically commenting that
“Ada is just another language.”

Nearly all the developers exposed to Ada pointed out
that adequate tools are essential for efficient and
accurate Ada development, whereas FORTRAN
development can be accomplished with little or no
external tool support. In particular, they cited the
need to have tools to help them with the Ada
compilation dependencies that allow Ada’s
sophisticated error checking during compilation.
Interestingly, those who had training followed by on-
the-job experience responded positively about Ada,
whereas those who had training and no hands-on

 64%
ADA

30%
ADA

13%
C

23%
FORTRAN

57%
FORTRAN

Simulators
(Ada Domain)

Attitude Ground Support Systems
(FORTRAN Domain)

13%
C

Figure 15. Language Preference for FDD Systems

SEL-95-001 42

work experience using Ada had a consistently
negative opinion of the language. This indicates that
the language is hard (complex) to learn, but that, with
day-to-day experience, one becomes proficient
quickly and experiences the benefits of the language.

As of March 1994, only 25–30% of the development
community had been directly exposed to Ada.
However, it was clear from interviews and
discussions with FDD personnel that there had been a
broader impact on the organization as a whole. Two
significant minority groups had emerged who were
strongly opinionated about language use, one in favor
of Ada and the other opposed. Both groups had been
fairly vocal and forthcoming with their views
throughout the transition to Ada. The second survey
was designed to capture the views of the developer
community as a whole and to look for a possible
effect that these vocal minorities may have had on the
remaining group of developers who had not yet been
trained in or exposed to Ada.

The second, broader survey (see Appendix C)
collected responses to questions about basic
background information as well as opinions about the
use of Ada at the FDD. Background information
included job category, FDD experience, computer
language experience, and Ada exposure. Ada
opinion questions included whether the use of Ada
was appropriate at the FDD, whether Ada should be
restricted, whether its use should be increased, and
whether its use should be decreased. The survey
team collected 103 responses from developers
(including maintainers and testers), 15 responses
from managers, and 7 responses from SEL
researchers and others. In order to ensure candid
responses, respondents were given the option to
return the surveys anonymously.

Approximately half of the developers answered
“don’t know” or “don’t care” to all four Ada opinion

questions. Of the half who expressed opinions, a
clear majority was positive about the appropriateness
of Ada at the FDD. Most felt that the level of usage
should remain roughly constant, neither expanding
nor reducing the amount or type of application
software developed in Ada. Table 8 presents the
responses for those who expressed an opinion. The
balance of this section summarizes the views of the
developers surveyed.

The backgrounds of those with the strongest negative
opinions about Ada provided some insight into
probable causality. Source of Ada information and
knowledge appears to be a key contributor. Of those
with the most negative responses, only 1 in 8 had on-
the-job experience with Ada. The others had only
taken an Ada class or self-studied it, or had no real
exposure to Ada at all. (Among those expressing
opinions in general, fully one-third had Ada work
experience, confirming that work experience
improves one’s opinion of the language.) Responses
from those developers who received their information
about Ada only from others at the FDD indicated that
negative opinions about Ada were more likely than
positive ones to influence those with no formal Ada
exposure.

The survey also revealed a slight negative effect from
in-house Ada language training when it was not
followed by Ada work experience. This supports
anecdotal evidence that the in-house training given at
the FDD was detrimental to the typical developer’s
opinion of the language, while further confirming the
positive effects of Ada work experience. Subsequent
investigation revealed that responses varied
depending on the specific class and instructor who
conducted the Ada training. The classes conducted
by a trainer from an outside organization were
generally better received than those conducted by in-
house Ada experts.

Table 8. Ada Survey Responses for Developers Expressing Opinions

Ada Opinion Questions All Developers Developers Without Ada Experience

Yes No Yes No

Is Ada appropriate in the FDD? 79% 21% 50% 50%

Should Ada use be restricted? 44% 56% 67% 33%

Should Ada use be increased? 35% 64% 0% 100%

Should Ada use be decreased? 37% 63% 100% 0%

43 SEL-95-001

The length of time spent at the FDD, the number of
years of FORTRAN experience, and the number of
computer languages known had no effect on a
developer’s opinion of Ada. However, a higher than
average number of recommendations to decrease the
use of Ada came from the customer organization as
compared with the FDD contractor organization. To
obtain a more complete picture of the range and
distribution of Ada opinion, including the distribution
by organization, the responses to the four questions
were converted to composite scores. Positive values
were assigned to positive Ada opinions and negative
values to negative opinions. Zero values were
assigned to “don’t know” or “don’t care” responses.*

Figure 16 shows a frequency distribution of the
composite scores. The tallest bar, at the neutral score
of zero has been truncated to clarify the shape
elsewhere in the histogram. The tendency for
frequencies to diminish outward from the center is
interrupted by “bumps” in both tails. These bumps in
the curve at both the extreme positive and the
extreme negative scores reflect the strongly
opinionated and polarized minorities on both sides of
the Ada issue. Opinions expressed by the bulk of the
respondents, though, fell squarely in the middle,
indicating a vast majority having no bias whatsoever.

The contractor organization expressed a more
positive overall opinion of Ada than the customer
organization. Contractors believed that exposure to
and experience with new technologies would make
them more marketable and would lead to better future
career opportunities. The marketability of Ada
developers was confirmed in 1989 when the
contractor organization lost several of its most
experienced Ada developers after the initial Ada
projects were completed. For various reasons, often
purely economic ones, several developers chose
career moves away from the FDD at a critical time in
the Ada transition. Although some of the most

*Weightings were applied to reflect the strength of opinion
indicated by the response. The weighting scheme was
tuned slightly in order to normalize the sum of all
developer opinion scores to near-zero (i.e., so distribution
of scores was balanced on either side of zero). The weights
for each response did not appear on the original survey
questionnaire. Because the questions were designed to be
particularly revealing of negative opinions, the lowest
possible score is -7 while the highest possible score is +5.
Independent of the high frequency of zero scores due to
“don’t care” or “don’t know” responses, the distribution
appears to be roughly balanced (the average of all non-zero
scores was -0.02, or nearly zero).

knowledgeable Ada developers remained in the FDD,
this migration removed a core of Ada experience and
opened the door for many new developers to gain
Ada experience. Had this exodus not occurred, the
subsequent Ada projects would probably have
proceeded more smoothly, resulting in a more posi-
tive attitude towards Ada among all FDD developers.
Nevertheless, the remaining developers in the
contractor organization learned first-hand of the
opportunities available to their colleagues with Ada
experience. Now, in the mid-1990s, C and C++ seem
to have replaced Ada as the languages that
developers feel will make them more marketable.

The written comments on the survey forms expressed
additional observations, perceptions, and points of
view about Ada. The most prevalent theme among
these comments was the need for adequate tool and
vendor support when committing to Ada. Specific
references were made to the incompatibility of Ada
and the IBM mainframe architecture as well as to the
need for reliable vendor support. The lack of readily
available packages for interfacing Ada with software
toolboxes and other languages was also cited as
detrimental.

Next to inadequate tool support, the most commonly
mentioned point about Ada was the difficulty
experienced in learning and using the language
properly. Five developers said either that Ada was
hard to learn or that other languages, such as C, were
easier to use. Additional specific disappointments
included difficulties with Ada input and output and
the complexity of doing true OOD with Ada.

Not unexpectedly, the written comments tended to
parallel the Ada opinion scores obtained from the
other questions in the survey. The polarity of opinion
present at the FDD can be seen here, because the
strongest opinions, both negative and positive, were
usually held by those at the extreme ends of the
opinion score distribution. Overall, there were three
unconditional endorsements and six qualified
endorsements of the use of Ada in the FDD. On the
other hand, five respondents wrote completely
negative comments about Ada and another seven
were generally pessimistic or skeptical about Ada.

4.2.3 Management Perspective

Fifteen managers provided responses to the second
Ada opinion survey. Among the management subset,
the average tenure at the FDD was greater than
13 years, as opposed to less than 6 years average

SEL-95-001 44

FDD experience among the developer subset.
However, the average manager had facility with only
two languages whereas the average developer knew
more than four. The average manager had 15 years
experience in FORTRAN whereas the average
developer had about 9 years of FORTRAN
experience. Fewer managers had computer science
or physics backgrounds but slightly more had
mathematics backgrounds as compared with
developers.

About half of the managers (8 of the 15) had Ada
exposure but only one had actual on-the-job
experience using Ada (one other had managed an
Ada project). Classes or seminars in Ada constituted
the only exposure to the language among the other
six. The half with no Ada exposure (7 of 15)
obtained their information from others both within
and external to the FDD; only one cited additional
sources for his knowledge of Ada, including
literature and conferences.

The average management composite score was
slightly more positive towards Ada than the average
developer score. In general, manager opinions
reflected those of their staff. In fact, the division
between the customer and contractor organizations
was the only clear correlate to the Ada opinion score,
with the 5 managers from the customer organization
averaging to a net negative opinion and the 10
managers from the contractor organization averaging
to a net positive opinion about Ada.

Interestingly, the biggest difference between
developer and management opinion came from the
substantially greater percentage of managers who
favored restricting the use of Ada as compared with
developers. This appears to be a sign of caution
among managers. When compared with developers,
managers did not express any greater or lesser
interest in either expanding or reducing the use of
Ada, however they did more often wish to avoid the
unrestricted use of the language.

Composite Ada Preference Score

N
um

be
r

of
 R

es
po

ns
es

0

2

4

6

8

10

12

48

50

-7 -6 -5 -4 -2,
-3

-1 0 1 2 3 4 5

Figure 16. Distribution of Developers’ Ada Preference Scores

45 SEL-95-001

4.3 Net Result

Figure 17 depicts the growth of Ada software being
delivered each year during the Ada study period. A
sharp decline in the amount of development occurred
in late 1990. It was at this point that the FDD had
planned to begin developing parts of the larger
ground support systems in Ada on the mainframes.
However, the results of the early Ada compiler
evaluation and the portability studies made it clear
that developing on the mainframes, or even
developing elsewhere and porting to them, was not
feasible. Thus, the growth of new Ada development
stalled at this point.

At this same point in time, the FDD’s simulation
requirements changed, reducing the number of
simulators needed to support each spacecraft mission
from two to just one. This change resulted in a
further reduction in the amount of software slated for
development in Ada. The net result was a substantial
reduction, instead of the envisioned increase, in the
rate of Ada software delivery. The drop in Ada
development is even more dramatic when the amount
of reused software is eliminated from the totals and
only the investment in new Ada code is considered.
The flatter, dashed line below the curve for
cumulative delivered size in Figure 17 removes the
effects of reuse by showing only the number of new
and modified lines that were delivered.

The unavailability of an adequate Ada development
environment on the IBM mainframe was clearly a

significant stumbling block for the FDD in its
transition to Ada. Had the FDD been able to expand
Ada development into the mainframe environment as
originally planned, much of the operational software
that now exists in FORTRAN would have been
written in Ada. Much more of the staff would have
gained hands-on work experience in Ada, which,
based on the data presented in section 4.2.2, would
have led to a more positive reaction to the language.

If the FDD were to continue to use mainframes as its
principal operational environment, there would be no
straightforward way to fully transition to Ada.
However, the FDD has committed to and has begun
transitioning to open systems for operational support.
In the future, software will be developed and
deployed on workstations in a networked environ-
ment. Thus, a full transition to Ada will depend on
the viability of using it for workstation development
on a larger scale.

A recent FDD internal study found that Ada develop-
ment environments are very expensive compared
with development environments for other languages
that support OO development. The typical cost for
an adequate Ada development environment for a
single workstation seat ranges from $8.5K to $17K,
depending on the quality and completeness of the
tool suite. Conversely, a comparable development
environment for C or C++ ranges from $2K to $3K
per workstation seat. Thus, the high cost of work-
station development environments now poses the
most serious risk to the future use of Ada in the FDD.

1/87 1/88 1/89 1/90 1/91 1/92 1/93

200

400

600

800

1000

GRODY

GOESIM

UARSTELS

GOADA

EUVETELS

EUVEDSIM SAMPEXTS

TONSVAX

POWITS

TOMSTELS

FASTELSPlanned
growth Delivered

lines

New lines

Turning point

K
LO

C
 in

 A
da

Figure 17. Growth of FDD Ada Software

47 SEL-95-001

Section 5. Conclusions and Recommendations

Overall, the FDD benefited greatly from its exposure
to and work with Ada. Although, nearly 10 years
after Ada’s introduction, the FDD uses it to develop
only 15–20% of its software, many of the concepts
and disciplined software engineering practices
associated with Ada have been adopted in the
development of all new systems, no matter what
language is used. By using OO techniques, such as
domain analysis, data abstraction, and information
hiding, the FDD has increased its reuse of software
by 300%. This in turn has led to reduced mission
cost and cycle time for FDD products. Thus, the
FDD achieved its original goal of reducing cost and
cycle time by maximizing reuse via the introduction
and use of the Ada language and OOD.

Although the SEL’s assessment of this technology
has shown it to be beneficial, it is unlikely that the
FDD will fully transition to Ada as its language of
choice. The lack of mainframe development environ-
ments and the high cost of viable Ada software
development environments for workstations continue
to be a barrier against using Ada to develop the bulk
of the FDD’s systems. Up until now there has been
no driving reason to change languages. However, the
results documented here show good reason to move
away from FORTRAN. As it moves to a distributed
workstation hardware environment, the FDD has the
opportunity to select a new, cost effective
language(s) for its future. Weighing the tradeoffs
between short-term costs, such as software develop-
ment environments for workstations, against software
development process and product issues and the long-
term costs of software maintenance, the FDD is likely
to find Ada a good choice.

The key findings and technology transfer lessons
learned from this research and analysis are
summarized below. Recommendations are made
regarding the future use of Ada in the FDD.

Key Findings

Use of Ada and OOD in the FDD resulted in:

Increased software reuse by 300%

Reduced system cost by 40%

Shortened cycle time by 25%

Reduced error rates by 62%

By 1990, projects using Ada and OOD were
experiencing measured improvement. When
compared with the SEL baseline that existed when
the Ada assessment began (1985), projects using Ada
showed improvement across the board in cost,
schedule, and quality as a result of achieving
unusually high levels of reuse.

The experimentation with Ada and OOD served
as a catalyst for many of the improvements seen
in the FORTRAN systems during the same
period.

In 1985, Ada was arguably more than just another
programming language. However, by exposing the
organization to the concepts of information hiding,
modularity, and packaging for reuse, that which was
“more than a language” was adopted, to the extent
possible, by the FORTRAN developers as well as by
the Ada developers. Anecdotal evidence supports the
theory that Ada served to catalyze several language-
independent advances in the ways in which software
is structured and developed across the organization,
and that these benefits have been institutionalized by
process improvements. The exposure of many
managers and application experts to object-oriented
design via Ada projects served to open their minds to
new ideas on other projects. FORTRAN AGSS
designers met significantly less resistance to using
object-oriented concepts to redesign the well-
established, well-understood standard architecture for
AGSSs than had been typical when design
alternatives were proposed previously.

FORTRAN systems applying object-oriented
concepts also showed significant improvement in
reuse. Like the Ada projects, higher reuse led to
reduced cycle times and lower error rates on the
FORTRAN projects. However, they did not
experience similar cost savings; use of Ada
resulted in greater cost reductions for systems
with roughly comparable levels of reuse.

The FORTRAN systems also showed improvements
in schedule duration and quality attributable to
increased levels of reuse when compared with the
1985 baseline. However, the cost reduction was not
nearly as significant as with the Ada systems. This
was largely due to the effort required to maintain the
reusable software. Whereas the use of Ada generics

SEL-95-001 48

allowed project personnel to reuse code through
parameterized instantiation rather than repeated
modification, the FORTRAN systems required a
separate maintenance team to enhance the reusable
components (add new capabilities). Although the
separate maintenance team could make the modifica-
tions as efficiently as possible (due to familiarity with
the code) and the cost of reusing the code from the
projects’ point of view was virtually nothing, the
additional cost of supporting a separate maintenance
team nearly negated the savings.

Use of Ada resulted in smaller systems to
perform more functionality; while generalization
increased the size of the FORTRAN systems.

The use of Ada generics to implement a generalized
architecture in the UARSTELS simulator resulted in
a system that was 17% smaller than its predecessor
(GOESIM) and performed 10% more functionality.
Conversely, generalized FORTRAN subsystems are
10–40% larger than earlier single-mission versions.
Also, over time, the generalized FORTRAN com-
ponents have grown as they are enhanced to support
new missions, while the size of the generalized Ada
components has remained fairly constant.

Lack of viable Ada development environments on
the FDD’s primary development platform
severely hampered the transition to Ada.

When the FDD began using Ada, the availability of
vendor tools was of little concern. DoD’s mandate
that all of its systems be developed in Ada was
expected to provide a substantial market for Ada
compilers and tools. However, in reality, DoD
developed far fewer systems in Ada than expected.
This decreased the demand, and vendors lost their
incentive to supply Ada support tools. When it
became apparent that no vendor planned to provide a
full Ada development environment for the IBM
mainframe, the FDD had limited options. Because
the FDD had just installed a new IBM mainframe, it
could not change hardware for at least 5 years. It had
neither the money nor the clout (size) that a large
company or government agency might have had to
offer vendors the incentive to build an Ada
environment for the IBM mainframe. Another option
available at the time, the Rational development
environment, which other IBM-mainframe-based
organizations were using, was prohibitively
expensive for the FDD.

Thus, in 1990, when the FDD was ready to expand to
full use of Ada, it could not. This essentially stalled
the FDD’s transition to Ada. Although simulators
continued to be built in Ada and a small group of
people continued to develop plans and approaches for
building reusable building blocks and architectures in
Ada that would be used to construct systems on
workstations in the future, much of the workforce
continued to be untouched by the technology. This
standstill allowed other languages (such as C, C++) to
make advances as viable alternatives to Ada, and
allowed opponents of the technology within the
workforce to raise doubts about Ada among those
who had never been directly exposed to the
technology.

The high cost of Ada development environments
on workstations may deter future use of Ada as
the FDD transitions to open systems.

Today, as the FDD prepares to transition from the
mainframe environment to open systems and
software development on workstations, the organiza-
tion is faced with a large investment for new
hardware and support software. Ada development
environments (compilers and the necessary software
development tools) cost significantly more (3–8
times more per seat) than development environments
for other languages that are commonly used with
OOD, such as C++. This poses a financial barrier
against the FDD’s future use of Ada that should be
weighed against the potential savings of building and
maintaining systems using Ada.

The introduction of Ada sparked much
controversy within the FDD. At this time, most
of the FDD workforce is lukewarm toward using
Ada, with two vocal minorities for and against
its continued use. However, most personnel
support the use of object-oriented techniques.

A definite negative attitude toward Ada exists among
a small percentage of developers and managers in the
FDD who have no direct working experience with
Ada. In addition, two small, but vocal groups of
people have demonstrated a very strong bias for and
against Ada, respectively. Both of these groups
appear to have contributed to the negative bias
among the general population: the proponents by
overselling the technology and the opponents by
negative campaigning. Interestingly, there does not
appear to be a corresponding bias against OOD.

49 SEL-95-001

Nearly all of the people believe that OO techniques
are beneficial and look for ways to apply them, no
matter what language they are using.

Technology Transfer Lessons Learned

Technology insertion takes a long time,
especially when several technologies are com-
bined or when the technology affects the full
development life cycle and requires a significant
amount of retraining.

It took approximately 5 years for the FDD to
transition to regular routine use of Ada for a par-
ticular class of systems. It took nearly 2 years longer
to understand the process differences well enough to
produce a standard process for Ada projects.

Parallel development experiments are an
effective way of minimizing the risk of a major
new technology to the organization; however,
the project using the new technology must be
tightly managed to maximize value and minimize
negative effects.

Use of the GRODY parallel development experiment
to introduce Ada and OOD to the FDD had both
positive and negative effects on the technology
infusion process. On the positive side, it eliminated
the risk to operational software, thus allowing free
and complete exploration of the technology.
However, loose management of the experimental
project led to inflated functionality and nonadherence
to schedules. Because of the inflated functionality,
direct comparisons of size and error rates were not
possible; and the lack of adherence to deadlines made
it hard to compare costs and life-cycle schedules.
These factors compromised the integrity of the
experiment and contributed to the perception within
the FDD that Ada is a “sand-box” (or experimental)
technology.

First impressions are very important; be careful
to understand and set realistic expectations
regarding the new technology for everyone
affected.

First impressions caused many problems during the
FDD’s experience with Ada. Because the developers
did not anticipate the impact of the new language and
design decisions on system performance, they did not
focus on performance requirements during the
development of the early systems. Unprepared users
were very disappointed in the performance of the

early systems and blamed the technology rather than
the way in which it had been applied. Today, it is
hard to find a dissatisfied user, but it took a lot of
effort to overcome the initial impression that Ada
was “too slow.”

Project personnel will focus on and meet the
goals set for them at the expense of those not
explicitly stated. Be careful to consider all
aspects of the new technology when setting goals
for pilot projects, and clearly state all goals and
their relative priority.

Each one of the experiments and pilot projects met
the goals set for them. However, projects often
encountered problems in areas where they sacrificed
or overlooked something because of their narrow
focus on their primary goal. For example, GRODY
personnel explored the new features of the language
without paying any attention to system performance.
And even after GRODY’s poor performance was
known, the GOADA and EUVEDSIM teams opted to
reuse inefficient code because high reuse was their
goal. The GOESIM team sacrificed the use of new
Ada features and OO concepts to guarantee delivery
on schedule and within budget.

New technology advocates are essential to
initiate and sustain the technology transfer
process. However, if they are not sensitive to the
needs and concerns of the organization and its
developers, they will impede rather than
facilitate the process.

The FDD had a few respected technology experts
who were very knowledgeable about Ada and OOD
and who were enthusiastic proponents of the
language. Following their lead, the FDD vigorously
pursued Ada and OOD and tried many new ideas that
moved the technology’s application forward in both
industry and the FDD. These technology experts or
advocates were expected to assist people who were
learning and using the technologies for the first time.
However, in some cases, the advocates’ zeal for Ada
and lack of real project experience made them less
sensitive to the concerns of the people who needed to
use the new language on real projects. Consequently,
they provided help with technical problems, but did
not acknowledge and constructively discuss others’
frustrations with applying Ada. Gradually people
became disillusioned with the technology advocates
and stopped going to them for help and, in some
cases, began to actively campaign against them. This
greatly impeded the technology infusion process.

SEL-95-001 50

Technology experts are essential to understanding
and applying new technology correctly; but not all
are well-suited to the advocate role. Advocates
should be chosen carefully and the other technology
experts kept in the background. Outside consultants
should be used for initial training and coaching, and
respected senior personnel and project leaders should
be relied on to be coaches after they have been
trained and have used the technology on a project.

Initial language training is best accomplished by
outside vendors. Local training should focus on
how to apply the language in the local environ-
ment.

Of the two methods used for institutional Ada
training in the FDD, the language courses taught by
outside vendors (external to the local FDD/contractor
organizations) were more successful. The FDD
training experiences indicate that new technology
training is best when taught by an instructor who is
not known within the organization. That way the
technology is not loaded with the extra baggage of
personality conflicts or issues such as contractors
teaching customers with whom they work on a daily
basis. Obviously, local application of the technology
should be taught by someone within the local
organization. Here it is best to use a senior developer
or manager who has learned the technology and
applied it on a project, rather than a technology
expert who may lack “real-world” experience using
the technology.

Recommendations

The FDD should continue to use Ada whenever
possible. This would include for those systems
that reuse existing Ada code and any other
projects (or portions of projects) that are
expected to be long-lived and can be developed
and deployed on an Ada-capable platform.

Because many of the intended benefits of Ada have
already accrued at the FDD and because the main-
frame obstacle continues to hamper the complete
adoption of Ada, it would be unrealistic for the FDD
to mandate the use of Ada for all software develop-
ment at the FDD.

However, it is also recommended that the FDD
choose to use Ada in all cases where no clear
disadvantage in doing so exists. This would indicate

not only the continued use of Ada on satellite
simulators but also the use of Ada on portions of any
other projects that are expected to be long-lived and
can be developed and deployed on an Ada-capable
platform. As the FDD migrates away from
mainframes and toward workstations, this will be an
increasingly large segment of the software developed.
Over the long term, Ada is a good candidate for
future versions of the large reusable software libraries
that are currently written in FORTRAN and
maintained by a separate group of experts who
continously augment the code’s functionality to keep
up with the needs of the client projects. Ada can be
used to implement those subsystems, along with
many other basic domain functions, as sets of
separable and more maintainable abstractions, which
would eliminate the high coupling found in the
FORTRAN versions and lead to reduced main-
tenance costs.

The FDD should build reusable software in a
language that supports object-oriented con-
structs and consider using specialized teams of
experts to configure the reusable components for
each mission. This would likely further improve
the efficiency of the reuse process.

The different reuse approaches used on the Ada and
FORTRAN projects both had advantages and
disadvantages. The best features of each should be
combined to produce a more efficient reuse process.
Reusable software components and architectures
ideally would be implemented in a language that
supports OO constructs, such as generics and strong
typing, as does Ada. This will eliminate the size
inflation experienced by using FORTRAN to emulate
them and make the system more maintainable (less
effort to enhance for future missions). However, the
concept of a separate maintenance team for reusable
software (as is currently used for the FORTRAN
systems) should be retained. This will eliminate the
need for project personnel to understand the com-
plexities of generic architectures and parameteriza-
tion (difficulties encountered by each Ada team in the
FDD). It will also eliminate the configuration
management risks associated with multiple mission-
specific versions of the reusable software—risks that
will increase as systems grow larger and live longer.
Using this combined approach, the cost of the
separate maintenance group would be expected to be
much lower.

51 SEL-95-001

The FDD should investigate lower-cost
alternative languages to support object-oriented
development on workstations. However, trade-
off analyses should consider the cost of software
development environments, the efficiency and
quality of software development, and the ease
and cost of long-term maintenance for the
languages under consideration.

Over the next 5–10 years, the FDD will transition
from the mainframes to open systems; future
development will be done on workstations. The
FDD’s recent experience on both Ada and
FORTRAN projects has demonstrated that object-
oriented concepts lead to high levels of reuse.
Because FORTRAN implementation of object-
oriented (generalized) designs results in larger, more
cumbersome systems and Ada development environ-
ments for workstations are somewhat expensive,
neither Ada nor FORTRAN may be a practical
language of choice for all future projects. Further
SEL-conducted experiments are recommended to
assess the suitability of one or more lower-cost
alternative OO languages. Experiment results can be
compared against the Ada and FORTRAN baselines
documented in this report. Care should be taken,
however, to consider the long-term implications of a

language choice, not simply software development
project results. For example, the cost savings of
purchasing a C++ development environment instead of
one to support Ada could be offset or absorbed by the
extra cost to maintain C++ software.

Note to Readers Outside the FDD

One of the original objectives behind the DoD’s
development of the Ada language was the goal of
providing a common language that would support the
portability of programs, tools, and personnel across
many projects. Another Ada goal was to provide, in
Ada, a tool beneficial for large-system development
and long-term maintenance. Because the FDD uses a
single language and develops small to mid-sized
systems with relatively short life spans, this
organization was not able to assess Ada in the context
for which it was designed. Hence, readers of this
evaluation should bear in mind that this study reports
only one experience with this technology. As the
findings suggest, the language offers clear benefits
and involves significant investment. The specific
influential factors in any one organization (e.g.,
software domain, hardware environment, long-term
goals) must be considered in any evaluation of Ada’s
applicability and effectiveness.

53 SEL-95-001

Appendix A. Project Data

Tables in this appendix present the project data used in the quantitative analysis in section 3 and the 1985 SEL
baseline measures against which change was measured. The project data are from Ada and FORTRAN projects
active in the FDD during the study period.

• Table A-1. Project Size Data

• Table A-2. Project Reuse Data

• Table A-3. Project Effort Data

• Table A-4. Characteristics and Schedule Data

• Table A-5. System Run-Time Performance Data

• Table A-6. Project Error Data

• Table A-7. 1985 SEL Baseline Measures

SEL-95-001 54

Pr
oj

ec
t N

am
e

Ty
pe

La
ng

ua
ge

To
ta

l
Li

ne
s

C
om

m
en

t
Li

ne
s

Bl
an

k
Li

ne
s

N
on

bl
an

k/
N

on
co

m
m

en
t

Li
ne

s

To
ta

l
St

at
em

en
ts

D
ec

la
ra

tio
ns

Ex
ec

ut
ab

le
s

Li
ne

s p
er

St
at

em
en

t

G
R

O
D

Y
D

S
A

da
12

82
61

40
46

2

27
57

1

60
22

8

20
79

1

68
46

13

94
5

6.

17

G
O

A
D

A
D

S
A

da
17

11
02

41
94

0

33
45

0

95
71

2

27
77

6

10
55

1

17
22

5

6.
16

G

O
ES

IM
TS

A
da

92
09

5

26
63

5

0

65
46

0

17
79

2

70
98

10

69
4

5.

18

U
A

R
ST

EL
S

TS
A

da
68

14
8

17

81
2

12

02
1

38

31
5

14

67
4

78

30

68
44

4.

64

EU
V

ET
EL

S
TS

A
da

66
69

6

17
48

2

11
77

4

37
44

0

14
92

9

79
00

70

29

4.
47

EU

V
ED

SI
M

D
S

A
da

18
40

17

46

26
0

26

68
5

11

10
72

32
54

4

14
42

6

18
11

8

5.
65

SA

M
PE

X
TS

TS
A

da
61

44
7

16

95
7

10

85
1

33

63
9

13

93
0

72

71

66
59

4.

41

PO
W

IT
S

TS
A

da
68

10
7

18

78
9

12

54
4

36

77
4

14

90
9

66

71

82
38

4.

57

TO
M

ST
EL

S
TS

A
da

52
29

5

14
43

1

92
35

28
62

9

11
85

5

61
88

56

67

4.
41

FA

ST
EL

S
TS

A
da

64
72

3

17
86

1

11
43

0

35
43

2

14
16

8

71
55

70

14

4.
57

FA

ST
-G

TC
A

G
SS

 su
bs

A
da

20
42

6

45
27

45
27

11
37

2

95
07

49
63

45

44

2.
15

G
R

O
SS

D
S

FO
R

TR
A

N
51

70
4

22

40
9

0

29

29
5

27

64
2

11

92
7

15

71
5

1.

87

G
R

O
A

G
SS

A
G

SS
FO

R
TR

A
N

23
63

93

10

69
08

0

12
94

85

10

60
33

54
91

0

51
12

3

2.
23

G

R
O

SI
M

TS
FO

R
TR

A
N

38
95

0

18
08

2

0

20
86

8

17
78

7

71
74

10

61
3

2.

19

G
O

FO
R

D
S

FO
R

TR
A

N
37

04
3

18

92
6

0

18

11
7

15

63
5

59

25

97
10

2.

37

G
O

ES
A

G
SS

A
G

SS
FO

R
TR

A
N

12
88

59

10

69
08

0

21
95

1

45
84

6

19
51

7

26
32

9

2.
81

 -U

A
R

S
pa

rti
al

A
G

SS
 p

ar
tia

l
FO

R
TR

A
N

30
31

26

17

03
51

60
63

12
67

12

98

67
3

41

13
8

57

53
5

3.

07

 -A
C

M
E

A
G

SS
 p

ar
tia

l
FO

R
TR

A
N

c
34

90
2

17

93
4

69

8

16
27

0

15
68

8

89
81

67

07

2.
22

U

A
R

SA
G

SS
A

G
SS

 to
ta

l
FO

R
TR

A
N

/c
33

80
28

18
82

85

67

61

14

29
82

11
43

61

50

11
9

64

24
2

2.

96

U
A

R
SD

SI
M

D
S

FO
R

TR
A

N
10

64
46

54
25

6

21
29

50
06

1

51
32

3

20
36

9

30
95

4

2.
07

EU

V
EA

G
SS

A
G

SS
FO

R
TR

A
N

28
39

11

13

36
44

56
78

14
45

89

84

09
7

35

93
4

48

16
3

3.

38

 -S
A

M
PE

X
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
15

45
09

82
83

9

30
90

68
58

0

51
02

3

23
74

8

27
27

5

3.
03

 -S

A
M

PE
X

TP
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
c

19
63

2

95
50

39
3

96

89

74

81

45

94

28
87

2.

62

SA
M

PE
X

 A
G

SS
A

G
SS

 to
ta

l
FO

R
TR

A
N

/c
17

41
41

92
38

9

34
83

78
26

9

58
50

4

28
34

2

30
16

2

2.
98

 -W

IN
D

D
V

A
G

SS
 p

ar
tia

l
FO

R
TR

A
N

15
24

4

77
99

30
5

71

40

58

26

26

15

32
11

2.

62

 -W
IN

D
PO

PS
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
11

38
8

75

78

22

8

35
82

34
44

16
44

18

00

3.
31

 -W

IN
D

PO
LR

A
G

SS
 p

ar
tia

l
FO

R
TR

A
N

c
17

54
15

80
20

8

35
08

91
69

9

52
06

4

23
06

8

28
99

6

3.
37

IS

TP
A

G
SS

 to
ta

l
FO

R
TR

A
N

/c
20

20
47

95
58

5

40
41

10
24

21

61

33
4

27

32
7

34

00
7

3.

29

TO
M

SA
G

SS
A

G
SS

FO
R

TR
A

N
25

50
47

11
66

20

51

01

13

33
27

54
96

7

12
80

8

42
15

9

4.
64

FA

ST
A

G
SS

 p
ar

tia
l

A
G

SS
FO

R
TR

A
N

15
90

80

11

13
56

31
82

44
54

2

31
07

0

72
40

23

83
1

5.

12

Ta
bl

e
A

-1
.

P
ro

je
ct

 S
iz

e
D

at
a

55 SEL-95-001

P
ro

je
ct

 N
am

e
T

yp
e

L
an

gu
ag

e
T

ot
al

 L
in

es
N

ew
 L

in
es

E
xt

en
si

ve
ly

M
od

if
ie

d
L

in
es

Sl
ig

ht
ly

M
od

if
ie

d
L

in
es

V
er

ba
ti

m
L

In
es

P
er

ce
nt

V
er

ba
ti

m
R

eu
se

P
er

ce
nt

T
ot

al
R

eu
se

G
R

O
D

Y
D

S
A

da
12

82
61

12
39

35

11

43

30

37

14

6

0%

2%

G

O
A

D
A

D
S

A
da

17
11

02

10

98
07

12
49

6

41
75

0

70
49

4%

29

%

G

O
E

SI
M

T
S

A
da

92
09

5

59
78

3

57
84

15
07

8

11
45

0

12
%

29
%

U
A

R
ST

E
L

S
T

S
A

da
68

14
8

38

32
7

61

14

12

16
3

11

54
4

17

%

35

%

E

U
V

E
T

E
L

S
T

S
A

da
66

69
6

21

61

37

1

55
73

58
59

1

88
%

96
%

E
U

V
E

D
SI

M
D

S
A

da
18

40
17

20
85

9

36
24

8

87
41

5

39
49

5

21
%

69
%

SA
M

PE
X

T
S

T
S

A
da

61
44

7

0

33
01

61
20

52
02

6

85
%

95
%

PO
W

IT
S

T
S

A
da

68
10

7

12
97

4

79
80

20
87

8

26
27

5

39
%

69
%

T
O

M
ST

E
L

S
T

S
A

da
52

29
5

0

17

68

11

30
6

39

22
1

75

%

97

%

FA

ST
E

L
S

T
S

A
da

64
72

3

27
54

25
52

17
80

1

41
61

6

64
%

92
%

FA
ST

-G
T

C
A

G
SS

 s
ub

s
A

da
20

42
6

16

87
2

13

78

19

67

20

9

1%

11

%

G
R

O
SS

D
S

FO
R

T
R

A
N

51
70

4

33
19

6

34
93

85
74

64
41

12
%

29
%

G
R

O
A

G
SS

A
G

SS
FO

R
T

R
A

N
23

63
93

19
41

69

99

82

18

13
3

14

10
9

6%

14
%

G
R

O
SI

M
T

S
FO

R
T

R
A

N
38

95
0

31

77
5

0

42

94

28

81

7%

18
%

G
O

FO
R

D
S

FO
R

T
R

A
N

37
04

3

22
17

5

28
67

66
71

53
30

14
%

32
%

G
O

E
SA

G
SS

A
G

SS
FO

R
T

R
A

N
12

88
59

10
68

34

63

77

97

79

58

69

5%

12
%

 -
U

A
R

S
pa

rt
ia

l
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

30
31

26

26

03
82

93
40

21
53

6

11
86

8

4%

11

%

 -

A
C

M
E

A
G

SS
 p

ar
tia

l
FO

R
T

R
A

N
c

34
90

2

34
90

2

0

0

0

0%

0%

U
A

R
SA

G
SS

A
G

SS
 to

ta
l

FO
R

T
R

A
N

/c
33

80
28

29
52

84

93

40

21

53
6

11

86
8

4%

10
%

U
A

R
SD

SI
M

D
S

FO
R

T
R

A
N

10
64

46

63

86
1

17

47
6

20

71
0

43

99

4%

24
%

E
U

V
E

A
G

SS
A

G
SS

FO
R

T
R

A
N

28
39

11

41

55
2

13

59
7

14

84
4

21

39
18

75
%

81
%

 -
SA

M
PE

X
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

15
45

09

10

59
0

16

31

12

82

14

10
06

91
%

92
%

 -
SA

M
PE

X
T

P
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

c
19

63
2

15

89
9

19

20

17

77

36

0%

9%

SA
M

PE
X

 A
G

SS
A

G
SS

 to
ta

l
FO

R
T

R
A

N
/c

17
41

41

26

48
9

35

51

30

59

14

10
42

81
%

83
%

 -
W

IN
D

D
V

A
G

SS
 p

ar
tia

l
FO

R
T

R
A

N
15

24
4

13

47
1

58

1

19
6

99

6

7%

8%

 -
W

IN
D

PO
PS

A
G

SS
 p

ar
tia

l
FO

R
T

R
A

N
11

38
8

79

61

0

23

2

31
95

28
%

30
%

 -
W

IN
D

PO
L

R
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

c
17

54
15

14
27

37

15

81

25

31
0

57

87

3%

18
%

IS
T

P
A

G
SS

 to
ta

l
FO

R
T

R
A

N
/c

20
20

47

16

41
69

21
62

25
73

8

99
78

5%

18

%

T

O
M

SA
G

SS
A

G
SS

FO
R

T
R

A
N

25
50

47

58

21
7

20

94

34

67

19

12
69

75
%

76
%

FA
ST

A
G

SS
 p

ar
tia

l
A

G
SS

FO
R

T
R

A
N

15
90

80

27

52
9

19

85

99

32

11

96
34

75
%

81
%

T
ab

le
 A

-2
.

P
ro

je
ct

 R
eu

se
 D

at
a

SEL-95-001 56

Pr
oj

ec
t N

am
e

M
is

si
on

T
yp

e
L

an
gu

ag
e

E
ff

or
t1,

2
L

ib
ra

ry
3

T
as

k
C

or
re

ct
ed

E
ff

or
t

D
es

ig
n

H
ou

rs
C

od
in

g
H

ou
rs

T
es

tin
g

H
ou

rs
O

th
er

H
ou

rs

A
ll

A
ct

iv
ity

H
ou

rs
(n

o
m

gm
t.)

G
R

O
D

Y
G

R
O

D
S

A
da

23
24

4

0

23
24

4

49
09

64
67

29
25

48
32

19
13

3

G
O

A
D

A
G

O
ES

D
S

A
da

28
05

6

0

28
05

6

49
67

72
09

61
31

75
79

25
88

6

G
O

ES
IM

G
O

ES
TS

A
da

13
65

8

0

13
65

8

25
03

29
73

30
81

44
83

13
04

0

U
A

R
ST

EL
S

U
A

R
S

TS
A

da
11

52
6

0

11

52
6

21

60

30

67

37

15

22

26

11

16
8

EU

V
ET

EL
S

EU
V

E
TS

A
da

47
27

0

47
27

64
4

71

1

11
11

17
71

42
37

EU
V

ED
SI

M
EU

V
E

D
S

A
da

20
77

5

0

20
77

5

37
32

53
48

38
07

49
18

17
80

5

SA
M

PE
X

TS
SA

M
PE

X
TS

A
da

25
16

0

25
16

34
1

33

8

54
6

81

4

20
39

PO
W

IT
S

W
in

d-
Po

la
r

TS
A

da
11

69
5

0

11

69
5

10

72

22

09

47

60

36

36

11

67
7

TO

M
ST

EL
S

TO
M

S
TS

A
da

38
39

0

38
39

90
5

85

2

21
9

77

3

27
49

FA
ST

EL
S

FA
ST

TS
A

da
60

39

0

60

39

13

20

87

5

60
0

13

24

41

19

FA

ST
-G

TC
FA

ST
A

G
SS

 s
ub

s
A

da
43

22

0

43

22

15

94

12

23

46

9

10
6

33

92

G
R

O
SS

G
R

O
D

S
FO

R
TR

A
N

15
33

4

0

15
33

4

35
34

42
53

26
15

47
62

15
16

4

G
R

O
A

G
SS

G
R

O
A

G
SS

FO
R

TR
A

N
54

75
5

0

54

75
5

10

82
9

15

64
2

11

12
4

16

28
3

53

87
8

G

R
O

SI
M

G
R

O
TS

FO
R

TR
A

N
11

46
3

0

11

46
3

24

08

35

60

16

81

32

85

10

93
4

G

O
FO

R
G

O
ES

D
S

FO
R

TR
A

N
12

80
4

0

12

80
4

14

27

22

60

47

92

37

54

12

23
3

G

O
ES

A
G

SS
G

O
ES

A
G

SS
FO

R
TR

A
N

37
80

6

0

37
80

6

92
56

11
61

0

89
76

67
02

36
54

4

 -U
A

R
S

pa
rti

al
U

A
R

S
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
89

51
4

0

89

51
4

20

56
1

24

94
0

24

71
0

15

46
5

85

67
6

 -A

C
M

E
U

A
R

S
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
c

79
65

0

79
65

21
95

13
20

23
70

16
93

75
78

U
A

R
SA

G
SS

U
A

R
S

A
G

SS
 to

ta
l

FO
R

TR
A

N
/c

97
47

9

0

97
47

9

22
75

6

26
26

0

27
08

0

17
15

8

93
25

4

U
A

R
SD

SI
M

U
A

R
S

D
S

FO
R

TR
A

N
17

97
6

0

17

97
6

31

17

58

31

47

07

35

42

17

19
7

EU

V
EA

G
SS

EU
V

E
A

G
SS

FO
R

TR
A

N
21

65
8

0

21

65
8

44

19

51

33

64

37

45

51

20

54
0

 -S

A
M

PE
X

SA
M

PE
X

A
G

SS
 p

ar
tia

l
FO

R
TR

A
N

45
98

34
76

80

74

65

4

29
0

13

71

21

85

45

00

 -S

A
M

PE
X

TP
SA

M
PE

X
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
c

67
72

0

67
72

18
02

69
7

26

20

15

21

66

40

SA

M
PE

X
 A

G
SS

SA
M

PE
X

A
G

SS
 to

ta
l

FO
R

TR
A

N
/c

11
37

0

34
76

14

84
6

24

56

98

7

39
91

37
06

11
14

0

 -W
IN

D
D

V
W

in
d-

Po
la

r
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
59

52

0

59

52

0

0

0

0

0

 -W

IN
D

PO
PS

W
in

d-
Po

la
r

A
G

SS
 p

ar
tia

l
FO

R
TR

A
N

26
30

0

26
30

0

0

0

0

0

 -W
IN

D
PO

LR
W

in
d-

Po
la

r
A

G
SS

 p
ar

tia
l

FO
R

TR
A

N
c

58
01

0

0

58
01

0

16
66

1

67
50

12
52

6

94
99

45
43

6

IS
TP

W
in

d-
Po

la
r

A
G

SS
 to

ta
l

FO
R

TR
A

N
/c

66
59

2

0

66
59

2

16
66

1

67
50

12
52

6

94
99

45
43

6

TO
M

SA
G

SS
TO

M
S-

EP
A

G
SS

FO
R

TR
A

N
13

55
3

51

03

18
65

6

52
59

30
41

78
3

28

06

11

88
9

FA

ST
A

G
SS

 p
ar

tia
l

FA
ST

A
G

SS
FO

R
TR

A
N

85
02

63
41

14

84
3

24

74

14

77

69

4

14
69

61
13

Ta
bl

e
A

-3
.

Pr
oj

ec
t E

ffo
rt

 D
at

a

57 SEL-95-001

1. The total effort hours for projects TOMSTELS, FASTELS, TOMSAGSS, and FASTAGSS were adjusted to
compensate for a different testing process that was used on them. On the earlier projects, acceptance testing
hours were not recorded; only developer hours needed to fix errors and finalize documentation were recorded.
On these recent projects, the new independent testing process included both system and acceptance testing;
thus, both were measured. Only one-half of the independent testing hours were included here as a good
approximation of the system testing effort. This provides more comparable effort measurements.

2. The TOMSTELS and TOMSAGSS projects were stopped during the design phases and then restarted with
substantially revised requirements. Their effort hours reflect only the effort spent after the project restart.

3. The MTASS (library task) hours per project were computed by summing the weekly effort hours reported
during the life of each client project. The weekly effort was evenly allocated among the active client projects
that MTASS was supporting in a given week. MSASS supported only one client project. Each
MTASS/MSASS project total was further adjusted to 90% of the actual reported hours, so that only the effort
spent enhancing the reusable components for the client projects would be included. This eliminated the hours
spent fixing problems reported by ongoing mission users.

SEL-95-001 58

Table A-4. Characteristics and Schedule Data

Project Name Mission Type Language
Begin
Date

End
Date

Duration
(months)

GRODY GRO DS Ada 6/29/85 10/1/88 39
GOADA GOES DS Ada 6/6/87 4/14/90 34
GOESIM GOES TS Ada 9/5/87 7/29/89 23
UARSTELS UARS TS Ada 2/13/88 12/2/89 22
EUVETELS EUVE TS Ada 10/1/88 5/5/90 19
EUVEDSIM EUVE DS Ada 10/1/88 1/26/91 28
SAMPEXTS SAMPEX TS Ada 3/31/90 3/2/91 11
POWITS Wind-Polar TS Ada 3/24/90 5/9/92 26
TOMSTELS TOMS TS Ada 12/12/92 9/30/93 10
FASTELS FAST TS Ada 8/1/92 10/23/93 15
FAST-GTC FAST AGSS subs Ada 8/4/92 4/29/94 21

GROSS GRO DS FORTRAN 12/29/84 10/10/87 33
GROAGSS GRO AGSS FORTRAN 8/3/85 3/11/89 43
GROSIM GRO TS FORTRAN 8/31/85 8/1/87 23
GOFOR GOES DS FORTRAN 6/6/87 9/16/89 27
GOESAGSS GOES AGSS FORTRAN 8/29/87 11/11/89 26
 -UARS partial UARS AGSS partial FORTRAN 11/21/87 9/15/90 34
 -ACME UARS AGSS partial FORTRANc 1/30/88 9/15/90 32
UARSAGSS UARS AGSS total FORTRAN/c 11/21/87 9/15/90 34
UARSDSIM UARS DS FORTRAN 1/2/88 6/16/90 29
EUVEAGSS EUVE AGSS FORTRAN 10/1/88 9/15/90 23
 -SAMPEX SAMPEX AGSS partial FORTRAN 3/31/90 11/16/91 20
 -SAMPEXTP SAMPEX AGSS partial FORTRANc 3/31/90 11/30/91 20
SAMPEX AGSS SAMPEX AGSS total FORTRAN/c 3/31/90 11/30/91 20
 -WINDDV Wind-Polar AGSS partial FORTRAN 9/29/90 1/2/93 27
 -WINDPOPS Wind-Polar AGSS partial FORTRAN 6/23/90 5/9/92 23
 -WINDPOLR Wind-Polar AGSS partial FORTRANc 2/10/90 8/15/92 30
ISTP Wind-Polar AGSS total FORTRAN/c 2/10/90 1/2/93 35
TOMSAGSS TOMS-EP AGSS FORTRAN 2/5/93 4/15/94 14
FASTAGSS partial FAST AGSS FORTRAN 8/1/92 4/29/94 21

1. The TOMSTELS and TOMAGSS projects were stopped during the design phases and then restarted with
substantially revised requirements. Their dates have been adjusted to remove the time gap.

59 SEL-95-001

Table A-5. System Run-Time Performance Data

Project Name Mission Type Language
Simulated

Time to
Clock Time

Clock
Hours per
Simulated

Hour

GOADA GOES DS Ada 0.50 2.00
GOESIM GOES TS Ada 3.00 0.33
UARSTELS UARS TS Ada 2.55 0.39
EUVETELS EUVE TS Ada 2.60 0.38
SAMPEXTS SAMPEX TS Ada 8.00 0.13
POWITS Wind-Polar TS Ada 0.50 2.00
TOMSTELS TOMS TS Ada 10.00 0.10
FASTELS FAST TS Ada 6.00 0.17

GROSIM GRO TS FORTRAN 0.65 1.54
COBESIM COBE TS FORTRAN 2.00 0.50
GOFOR GOES TS FORTRAN 8.00 0.13

SEL-95-001 60

Pr
oj

ec
t N

am
e

T
yp

e
L

an
gu

ag
e

T
ot

al
L

in
es

(S
L

O
C

)

D
ev

el
op

ed
L

in
es

(D
L

O
C

)
St

at
em

en
ts

D
ev

el
op

m
en

t
E

rr
or

s

E
rr

or
s

pe
r

K
SL

O
C

E
rr

or
s

pe
r

K
D

L
O

C

E
rr

or
s

pe
r

St
at

em
en

t

G
R

O
D

Y
D

S
A

da
12

8,
26

1
12

5,
71

5
20

,7
91

22
9

1.
8

1.
8

11
.0

G
O

A
D

A
D

S
A

da
17

1,
10

2
13

2,
06

3
27

,7
76

41
5

2.
4

3.
1

14
.9

G
O

E
SI

M
T

S
A

da
92

,0
95

70
,8

73
17

,7
92

12
7

1.
4

1.
8

7.
1

U
A

R
ST

E
L

S
T

S
A

da
68

,1
48

49
,1

82
14

,6
74

15
3

2.
2

3.
1

10
.4

E
U

V
E

T
E

L
S

T
S

A
da

66
,6

96
15

,3
65

14
,9

29
9

0.
1

0.
6

0.
6

E
U

V
E

D
SI

M
D

S
A

da
18

4,
01

7
82

,4
89

32
,5

44
12

8
0.

7
1.

6
3.

9
SA

M
PE

X
T

S
T

S
A

da
61

,4
47

14
,9

30
13

,9
30

10
0.

2
0.

7
0.

7
PO

W
IT

S
T

S
A

da
68

,1
07

30
,3

85
14

,9
09

84
1.

2
2.

8
5.

6
T

O
M

ST
E

L
S

T
S

A
da

52
,2

95
11

,8
73

11
,8

55
6

0.
1

0.
5

0.
5

FA
ST

E
L

S
T

S
A

da
64

,7
23

17
,1

89
14

,1
68

30
0.

5
1.

7
2.

1
FA

ST
-G

T
C

A
G

SS
 s

ub
s

A
da

20
,4

26
18

,6
85

9,
50

7
15

0.
7

0.
8

1.
6

G
R

O
SS

D
S

FO
R

T
R

A
N

51
,7

04
39

,6
92

27
,6

42
10

4
2.

0
2.

6
3.

8
G

R
O

A
G

SS
A

G
SS

FO
R

T
R

A
N

23
6,

39
3

21
0,

59
9

10
6,

03
3

93
1

3.
9

4.
4

8.
8

G
R

O
SI

M
T

S
FO

R
T

R
A

N
38

,9
50

33
,2

10
17

,7
87

29
6

7.
6

8.
9

16
.6

G
O

FO
R

D
S

FO
R

T
R

A
N

37
,0

43
27

,4
42

15
,6

35
14

7
4.

0
5.

4
9.

4
G

O
E

SA
G

SS
A

G
SS

FO
R

T
R

A
N

12
8,

85
9

11
6,

34
1

45
,8

46
60

3
4.

7
5.

2
13

.2
 -U

A
R

S
pa

rt
ia

l
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

30
3,

12
6

27
6,

40
3

98
,6

73
77

8
2.

6
2.

8
7.

9
 -A

C
M

E
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

c
34

,9
02

34
,9

02
15

,6
88

17
5

5.
0

5.
0

11
.2

U
A

R
SA

G
SS

A
G

SS
 to

ta
l

FO
R

T
R

A
N

/c
33

8,
02

8
31

1,
30

5
11

4,
36

1
95

3
2.

8
3.

1
8.

3
U

A
R

SD
SI

M
D

S
FO

R
T

R
A

N
10

6,
44

6
86

,3
59

51
,3

23
61

3
5.

8
7.

1
11

.9
E

U
V

E
A

G
SS

A
G

SS
FO

R
T

R
A

N
28

3,
91

1
10

0,
90

1
84

,0
97

12
3

0.
4

1.
2

1.
5

 -S
A

M
PE

X
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

15
4,

50
9

40
,6

79
51

,0
23

31
0.

2
0.

8
0.

6
 -S

A
M

PE
X

T
P

A
G

SS
 p

ar
tia

l
FO

R
T

R
A

N
c

19
,6

32
18

,1
82

7,
48

1
73

3.
7

4.
0

9.
8

SA
M

PE
X

 A
G

SS
A

G
SS

 to
ta

l
FO

R
T

R
A

N
/c

17
4,

14
1

58
,8

60
58

,5
04

10
4

0.
6

1.
8

1.
8

 -W
IN

D
D

V
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

15
,2

44
14

,2
90

5,
82

6
65

4.
3

4.
5

11
.2

 -W
IN

D
PO

PS
A

G
SS

 p
ar

tia
l

FO
R

T
R

A
N

11
,3

88
8,

64
6

3,
44

4
38

3.
3

4.
4

11
.0

 -W
IN

D
PO

L
R

A
G

SS
 p

ar
tia

l
FO

R
T

R
A

N
c

17
5,

41
5

15
0,

53
7

52
,0

64
95

9
5.

5
6.

4
18

.4
IS

T
P

A
G

SS
 to

ta
l

FO
R

T
R

A
N

/c
20

2,
04

7
17

3,
47

4
61

,3
34

10
62

5.
3

6.
1

17
.3

T
O

M
SA

G
SS

A
G

SS
FO

R
T

R
A

N
25

5,
04

7
99

,2
58

54
,9

67
62

0.
2

0.
6

1.
1

FA
ST

A
G

SS
 p

ar
tia

l
A

G
SS

FO
R

T
R

A
N

15
9,

08
0

55
,4

27
31

,0
70

57
0.

4
1.

0
1.

8

T
ab

le
 A

-6
.

P
ro

je
ct

 E
rr

o
r

D
at

a

61 SEL-95-001

Table A-7. 1985 SEL Baseline Measures*

Productivity 26 SLOC/day
11.8 statements/day

Code Reuse 20%

Error Rate 6.5 errors/KSLOC
14.3 errors/thousand statements

Maintenance Cost 8–15% of the development cost per year

Effort Distribution Design
Code
Test
Other

23%
21%
30%
26%

Classes of Errors Data
Interface
Logic/Control
Initialization
Computational

27%
22%
20%
16%
15%

Project Duration Simulators ~ 20 months
AGSS ~ 30 months

*Based on FDD projects active between 1978 and 1985

63 SEL-95-001

Appendix B. Detailed Reuse Analysis

During the last year of the independent assessment, the team delved more deeply into the reuse issue. They sought
to understand the different reuse approaches that have been used on the FORTRAN and Ada projects and to
determine their effect on the resulting products. Ultimately, they hoped to determine which improvements resulted
from the different approaches for managing and modifying the reusable code and which ones were due to
differences and limitations in the languages. This section presents the detailed results of this analysis, some of
which have been highlighted in section 3 of this report. The complete information is included here, because this
reuse analysis has not been documented elsewhere. The following subsections provide insight into the different
approaches to reuse, reuse library maintenance costs, the effect of different kinds of reuse on productivity, and the
validity of the currently used cost model for Ada projects.

B.1 Ada vs. FORTRAN Reuse Methods

The reuse approach used to develop the FORTRAN AGSS systems differs from that used to develop the Ada
telemetry simulator projects. In the FORTRAN projects, the application programmer links to reusable subsystems
from one of two large subsystem families (known as MTASS, for multimission three-axis-stabilized spacecraft, and
MSASS, for multimission spin-axis-stabilized spacecraft) and adds new modules which conform to the data set
specifications preordained by those subsystem interfaces. Maintenance programmers for the libraries of reusable
subsystems are tasked to modify and update the master copy of each subsystem so that a single version of each can
meet the requirements of new missions while at the same time satisfying all previous client missions. This
backwards compatibility is important because AGSS systems must stay operational for the duration of a satellite
mission, which can be many years. Thus, the libraries are considered to be institutional software and maintenance is
funded independently from the development of each of the mission-specific AGSS projects.

The existence of single, centralized copies of the library subsystems for all users means that the individual
application programmers for each project do not have to be concerned with the internals of the subsystems; these
components are not copied into each project library and are therefore not treated as mission-specific code. This
lowers the development burden by reducing the amount of code that must be handled by a project. For example, the
SAMPEX AGSS client application required only 27K new lines of code to be written but reported a delivered size
of 176K lines because of the subsystems it reused from MTASS.

The Ada projects, on the other hand, are constructed from generic components copied into each new project library
from the most similar prior project. Most of these components remain unmodified, although modification by a
project team is permissible because it poses no risk to central, shared copies. The project team therefore has the
burden of directly handling and studying the generics to determine their suitability and possible need for
modification. Any maintenance is the job of the project team since there is no separate dedicated team responsible
for upgrading a central copy of the components to meet new requirements. Further, there is no comprehensive
documentation of the generics or of the general telemetry simulator architecture that might compensate for the lack
of an expert library maintenance team and that might allow an Ada programming team to reuse components in the
same “black-box” fashion that the FORTRAN developers are able to do.

Because Ada allows more parameterization and generalization than FORTRAN, the reusable Ada generics take
advantage of this additional flexibility by allowing mission-tailored, instead of hard-coded, data sets to be defined
and passed among the subsystems. The different styles of reuse and the higher generality of the Ada components
explain why there was a milder drop in reuse when the change of domains occurred in the Ada product line as
compared with the FORTRAN projects. The Ada project team for the first spin-axis-stabilized mission was still
able to reuse a sizable portion of the lower-level three-axis generics, whereas almost none of the FORTRAN
subsystems that handle three-axis missions were used for the first spin-axis satellite. The FORTRAN developers
again achieved high levels of reuse in their projects by developing a separate complete subsystem library for

SEL-95-001 64

spin-axis spacecraft (MSASS) analogous to the library of three-axis subsystems (MTASS). Instead of having con-
trolled libraries of subsystems, the Ada systems themselves became the basis for future simulators in either domain.

An important distinction between the reuse styles adopted for the two languages is that the two FORTRAN libraries
must be continually augmented to handle new missions in their respective domains. It is the practice of the
FORTRAN maintainers to augment the subsystems as necessary by adding code for any new requirements rather
than by generalizing or modifying the existing code. This approach is more straightforward given the limitations of
FORTRAN and it also avoids the risk of introducing errors for existing clients. However, this also causes the
FORTRAN libraries to grow over time. Conversely, the Ada generics form a set of smaller components that
requires little or no further modification to handle missions in either domain. The Ada developers directly handle
the generics needed for each project and further generalize them only when necessary (such as by deleting
unnecessary dependencies between components). New requirements (which typically involve the simulation of new
spacecraft sensors and devices) are handled by mission-specific code rather than by changes to the reusable
components.

Because the separate effort to upgrade the FORTRAN subsystems is not reported by the individual projects, the
verbatim reuse percentages reported in the project data make it appear that the two languages are equally able to
express generalized functionality. However, further investigation revealed that, when the efforts of the separate
FORTRAN maintenance programmers are taken into consideration, the actual amount of modification to the Ada
generics from mission to mission is far less than in the FORTRAN subsystems.

Maintenance and configuration control disadvantages can result from having separate copies of the reusable
components in each client project’s library. However, this has not been an issue with the Ada simulators, which are
smaller and have shorter operational phases than the larger AGSS projects. Nevertheless, this approach introduces
the cost of directly handling this software and means that the developers, with neither a library support team nor
comprehensive documentation (as yet), must study the internals of the reusable components to understand their
proper use and to determine if any enhancements are needed. The additional cost for this aspect of Ada reuse is
calculated through the comparison of “white-box” and “black-box” reuse presented in section B.3.

B.2 Adjusting for the FORTRAN Library Maintenance Costs

Because the additional effort expended on the part of the MTASS and MSASS library maintenance tasks benefits
each of the client FORTRAN AGSS projects, it is necessary to consider these hours when reporting the overall costs
and productivities of the recent AGSS projects. However, there is no entirely accurate way to apportion the MTASS
and MSASS hours across the client projects; effort data are collected at an inadequate level of detail to capture that
information. Nevertheless, a rough idea can be obtained by using that part of the MTASS/MSASS effort that is
spent doing enhancements. The total MTASS/MSASS effort for each client project can be calculated by totaling the
reported weekly effort data (evenly allocated among all active projects) for the appropriate maintenance group
during the time the client project was in active development. SEL data show that 90% of the MTASS/MSASS effort
is spent doing enhancements; therefore each project’s MTASS/MSASS effort contribution can be reduced to 90% of
the total. Thus, the additional effort expended on behalf of each project using this allocation method ranges from
about 3.5K hours to more than 6K hours, with the later projects showing greater maintenance costs.

It is important, when assessing total cost, to include the library maintenance effort in the FORTRAN project totals.
To fail to do so would seriously underrepresent the actual cost of the FORTRAN AGSS development. On the other
hand, when using the data to model the cost of new, modified, or reuse-based development from the project point of
view, only the reported mission-specific effort should be used.

B.3 Computing the Productivity of Reuse

Conventionally in this environment, reuse is classified as either verbatim reuse or reuse with modification. Using
the technique developed by Bailey,17 individual productivities of the different categories or modes of code
development/reuse in the FDD were estimated by deriving a set of simultaneous equations and then solving for the
unknown productivities. The effort for each project was expressed as the sum of the efforts to develop the various

65 SEL-95-001

amounts of code in each category (new, modified, verbatim). With sufficient data, it is possible to solve for the set
of productivities for the modes which most closely predict the actual effort required for each project.

A similar analysis was conducted for the Ada projects in the current study, and the results were comparable to
Bailey’s earlier work. Also, a similar analysis was performed to solve for the corresponding productivities on the
FORTRAN projects. The best overall solutions for the productivities for new, reused with modification, and
verbatim reuse for both Ada and FORTRAN code are shown in Table B-1. The FORTRAN solutions were not as
stable as the Ada solutions, and they had to be constrained to prevent anomalous results.

Table B-1. FORTRAN vs. Ada Productivities (Statements per Hour)

 for Code Development Modes

Category of Code Reuse FORTRAN Ada

New Code 1.2 1.1

Reuse with Modification 2.4 1.2

Verbatim Reuse 5.5 5.0

In the table, the productivities for both languages are nearly identical except for the “reuse with modification”
category, where the FORTRAN productivity is double that of Ada. This could indicate that FORTRAN units are
easier to modify than Ada units. However, this analysis concludes that the difference actually reflects the learning
curve required for reusing generic Ada code. When a project team needs to modify a part of the reusable software,
additional effort is required first to understand the code and its applicability, and then to generalize it further to
ensure future reusability.

As mentioned in section B.2, the verbatim reuse category in the FORTRAN projects denotes a different reuse
process than the verbatim reuse being performed in Ada. Ever since the availability of MTASS and MSASS, the
majority of the code reported by a FORTRAN project as reused verbatim has been from the reusable library
subsystems which are managed externally from the application developments. Instead of deducting the amount of
software contributed by the external libraries and reanalyzing the productivities for each development mode on the
remaining project-specific software, an additional mode of code development was defined: “black-box” verbatim
reuse. This is the reuse of software from externally maintained libraries, where the application programmer is not
required to learn or to pay attention to the internals of the reused code. This is in contrast to the alternate method of
verbatim reuse where the application programmer is responsible for deciding whether a particular component is
appropriate and reusable by studying and understanding its implementation. The term “white-box” has been
adopted to describe this style of verbatim reuse. Separating the verbatim reuse in this way allows a better
approximation of the overhead involved in learning, understanding, integrating, and testing software that can be
reused without change. It also provides a more equivalent basis for comparing the cost of verbatim reuse across the
languages.

Separation of the verbatim reuse category into black-box and white-box reuse for the later FORTRAN AGSS
projects where MTASS and MSASS were used yielded a more stable and well-behaved set of productivity estimates
for the development modes. As one might expect, the productivity for the new black-box verbatim reuse category
was very high. Depending on the group of projects included in the solution, some of the analyses showed it to be
essentially “infinite” (meaning that black-box statements can be “developed” for free, so the size of the reused
components has little or no effect on the reusing project’s cost). This means that productiviy values for the other
categories would be unaffected even if the black-box verbatim statements were eliminated from the project totals.

Reuse-library-supplied statements were included because the current reporting style is to include them in project
totals. However, in the future it might make more sense to exclude them from project development estimates and
reported sizes, analogous to the way the size of a math library is ignored. It would still be important to budget for
the library maintenance task, however, and to understand that library maintenance remains an additional cost of
delivering FORTRAN AGSS projects. Eliminating the reporting of the FORTRAN library software which

SEL-95-001 66

masquerades as zero-cost verbatim reuse would also bring the Ada and FORTRAN reuse factors more in line with
one another.

The productivities for the FORTRAN development modes with the addition of black-box verbatim reuse are shown
in Table B-2. There is no development mode corresponding to black-box verbatim reuse on the Ada projects.

Table B-2. Code Development Productivities Including Black-Box Reuse

Category of Code Reuse FORTRAN Ada

New Code 1.2 1.1

Reuse with Modification 2.4 1.2

White-Box Verbatim Reuse 4.0 5.0

Black-Box Verbatim Reuse 21.0 N/A

B.4 Comparing Reuse Factors with Existing Models

The current model used in the FDD for estimating the cost of reuse was developed based on empirical data available
in 1993.11 It specifies that development by reuse in FORTRAN costs about 20% of the cost of new code
development, but that reuse in Ada costs about 30% of the cost of new code. These figures are the “reuse factors”
for each language that can be multiplied by the new code development costs to estimate the cost of delivering reused
software. This model suggests that it costs 50% more to reuse Ada over FORTRAN from the reusing project’s point
of view.

The findings in this report suggest that the apparent advantage that FORTRAN reuse has over Ada reuse is created
by the highly productive black-box verbatim reuse used on FORTRAN projects, which is not available to the Ada
projects. The cost of the separate task which offloads the actual expense of the black-box code (i.e., the effort to
understand and modify the FORTRAN utility subsystems) is not included in these reuse cost estimates because it is
funded separately and available to all FORTRAN AGSS projects. However, because the separately funded cost of
maintaining the reusable libraries raises the true cost of the FORTRAN projects in a way that is not reflected by
these models, the reuse cost factors are not directly comparable.

A better way to look at the relative costs of reuse in the two languages is to consider the ratios of productivities
between new and reused code in each language, as was done in section B.3. These ratios appear to be nearly
identical (except for reuse with modification, where, in the FORTRAN case, a separate team performs the
modifications, and the productivity rates diverge accordingly), which suggests that similar reuse processes result in
similar productivity levels, regardless of language. In fact, it even appears that the per-line productivities are
comparable between the languages, which should further simplify future cost models.

67 SEL-95-001

Appendix C. Data Collection Instruments

As part of the independent assessment, the team attempted to capture and understand the perspectives of the FDD
software engineering staff. They conducted two surveys to gather this information. The first addressed only those
who had been directly exposed to Ada through work experience or training. The second addressed the entire
workforce. This appendix includes copies of these two data collection instruments.

• Figure C-1. Ada User’s Survey

• Figure C-2. Ada at the FDD Questionnaire

SEL-95-001 68

Ada User's Survey 1 October, 1993

1. How many years have you been a part of the FDD?

2. What was your principal training prior to joining the FDD? (astrodynamics, simulation, computer
science, mathematics, engineering, etc...)

3. How many years of FORTRAN work experience did you have before joining the FDD? How many
school (college) years?

4. How many years of Ada work experience did you have before joining the FDD? How many school
years?

5. How many years of C language work experience did you have before joining the FDD? How many
school years?

6. In what other languages can you (or could you at one time) program?

7. If you were leading the team to develop the next simulator, what language would you use? Why?
Under what circumstances would you use either of the other two languages?

8. If you were leading the team to develop the next AGSS, what Ianguage would you use? Why? Under
what circumstances would you use either of the other two languages?

9. What other opinions do you have relative to the use of Ada, FORTRAN, or C in FDD software
developments? (Any comments on the impact of team size, schedule constraints, reuse constraints,
cost constraints, maintainability constraints, portability contraints, performance constraints, etc.?)

Figure C-1. Ada User’s Survey

69 SEL-95-001

Ada at the FDD Questionnaire

1. Name (optional, but please see note at bottom)

2. For how many years have you been a part of the FDD? ________

3. What is your primary job? Circle one: Developer Maintainer Tester Manager Other:

4. What was your principal professional training or education major prior to joining the FDD?
Circle or write-in:

astrodynarnics astronomy aerospace business chemistry
computer science control theory engineering geophysics numerical science
mathematics music physics simulation operations research
other:

5. How many years of FORTRAN work experience, including school, have you had?

6. Have you ever been exposed to the Ada programming language? Circle one: Yes* No**

 *lf “yes,” approximate year of first exposure: 19

 *If “yes,” circle kinds of Ada experience:

 professional training/classes/seminars school self-study

 on-the-job development or maintenance other other

 **If “no,” circle the sources of information which have contributed the most to your impressions of Ada:

 news items professional literature others in the FDD others outside of the FDD

 job experiences conferences other other

7. In what languages other than Ada or FORTRAN can you (or could you at one time) program?
Circle or write-in:

Algol Assembly APL Basic C C++ COBOL
Euclid Lisp ModuIa Pascal PL-1 Prolog Smalltalk
Snobol

 Note: Opinions or comments provided will only be associated with groups, such as developers, testers, etc., and will not be
associated with individuals. Your name, in answer to question 1, will be known only by the outside consultant and will be
used only in case it is necessary to contact you for clarification. These sheets will be kept off site until the final report is
completed, after which they will be destroyed. Thank you for your time and cooperation.

Figure C-2. Ada at the FDD Questionnaire (1 of 2)

SEL-95-001 70

8. At the end of this study, a final report will be issued which will include discussion of the future of Ada at the
FDD. Circle your answers to the following and provide comments as indicated:

a. Do you think the use of Ada is appropriate at the FDD? Yes No Don't know Don't care

b. Do you think the use of Ada should be restricted at the FDD? Yes* No Don't know Don't care
*If yes, describe appropriate and inappropriate uses of Ada:

c. Would you like to see the use of Ada increase at the FDD? Yes* No Don't know Don't care
*If yes, describe additional areas where Ada can be used:

d. Would you like to see the use of Ada decrease at the FDD? Yes* No Don't know Don't care
If yes, describe areas where Ada should be eliminated:

9. Many FDD personnel have strong opinions about Ada and its use here. We are particularly interested in any
comments and judgements you may have about the use of Ada at the FDD which you have not had the
opportunity to express in your previous responses. Please use the space below to summarize, as frankly as
possible, any additional opinions you have about Ada and its use at the FDD.

Figure C-2. Ada at the FDD Questionnaire (2 of 2)

71 SEL-95-001

Acronyms

AGSS attitude ground support system

CDR critical design review

COMPASS Combined Mission Planning and Attitude Support System

DLOC developed lines of code

DoD Department of Defense

EMS electronic message system

EUVE Extreme Ultraviolet Explorer

EUVEAGSS EUVE Attitude Ground Support System

EUVEDSIM EUVE Dynamics Simulator

EUVETELS EUVE Telemetry Simulator

FAST Fast Auroral Snapshot Telescope

FAST GTC FAST General Torquer Command Utility

FASTELS FAST Telemetry Simulator

FDAS Flight Dynamics Analysis System

FDD Flight Dynamics Division

FDDS Flight Dynamics Distributed System

GENSIM Generalized Simulator

GOADA GOES Dynamics Simulator in Ada

GOES Geostationary Operational Environmental Satellite

GOESIM GOES Telemetry Simulator

GOOD General Object-Oriented Design

GRO Gamma Ray Observatory

GRODY GRO Dynamics Simulator in Ada

GROSS GRO Dynamics Simulator in FORTRAN

GSFC Goddard Space Flight Center

GSS Generalized Applications Support Software

ISTP International Solar-Terrestrial Physics

KSLOC thousand source lines of code

MSASS multimission spin-axis-stabilized spacecraft

SEL-95-001 72

MTASS multimission three-axis-stabilized spacecraft

NASA National Aeronautics and Space Administration

OO object-oriented

OOD object-oriented design

PDR preliminary design review

POLAR Polar Plasma Laboratory

POWITS WIND/POLAR Telemetry Simulator

SAMPEX Solar, Anomalous, and Magnetospheric Particle Explorer

SAMPEXTS SAMPEX Telemetry Simulator

SEL Software Engineering Laboratory

SLOC source lines of code

TDRSS Tracking and Data Relay Satellite System

TOMS Total Ozone Mapping Spectrometer

TOMSTELS TOMS Telemetry Simulator

TONS TDRSS Onboard Navigation System

UARS Upper Atmosphere Research Satellite

UARSTELS UARS Telemetry Simulator

UIX User Interface Executive

WIND Interplanetary Physics Laboratory

73 SEL-95-001

References

 1. NASA/GSFC Software Engineering Laboratory, SEL-94-005, An Overview of the Software Engineering
Laboratory, F. McGarry, G. Page, V. Basili, et al., December 1994

 2. ___, SEL-93-003, “Impact of Ada in the Flight Dynamics Division: Excitement and Frustration,” J. Bailey,
S. Waligora, M. Stark, Proceedings of the Eighteenth Annual Software Engineering Workshop, pp. 422–438,
December 1993

 3. ___, SEL-81-305SP1, Ada Developers’ Supplement to the Recommended Approach, L. Landis, R. Kester,
November 1993

 4. ___, SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. McGarry,
et al., June 1992

 5. ___, SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August 1986

 6. Computer Sciences Corporation, CSC/TM-91/6065 (552-FDD-91/034) SEL Ada Reuse Study Report, R. Kester,
May 1991

 7. NASA/GSFC Software Engineering Laboratory, SEL-90-003, A Study of the Portability of an Ada System in the
Software Engineering Laboratory, L. Jun and S. Valett, June 1990

 8. ___, SEL-91-003, Ada Performance Study Report, E. Booth and M. Stark, July 1991

 9. Goddard Space Flight Center, Flight Dynamics Division, 552-FDD-91/068R0UD0, Ada Efficiency Guide,
E. Booth, August 1992

10. ___, 552-FDD-92/033 R0UD0 Ada Size Study Report, S. Condon, M. Regardie, September 1992

11. NASA/GSFC Software Engineering Laboratory, SEL-93-002, Cost and Schedule Estimation Study Report,
S. Condon, M. Regardie, M. Stark, et al., November 1993

12. ___, SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada
Development Team, R. Murphy and M. Stark, October 1985

13. ___, SEL-91-006, “Experiments in Software Engineering Technology,” Proceedings of the Sixteenth Annual
Software Engineering Workshop, F. McGarry and S. Waligora, December 1991

14. ___, SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature, D. Kistler,
J. Bristow, D. Smith, November 1994

15. Institute for Defense Analysis, IDA Paper P-2899, “Comparing Ada and FORTRAN Lines of Code: Some
Experimental Results,” T. Frazier, J. Bailey, M. Young, November 1993

16. ANSI/MIL-STD 1815A, Reference Manual for the Ada Programming Language, February 1983

17. Bailey, John W., A Component Factory for Software Source Code Re-engineering and Reuse, University of
Maryland, UMI 9234514, May 1992

18. Goddard Space Flight Center, Flight Dynamics Division, Ada Compilers on the IBM Mainframe (NAS8040)
Evaluation Report, L. Jun, January 1989

19. ___, IBM Ada/370 (Release 2.0) Compiler Evaluation Report , L. Jun, September 1992, and Intermetrics
MVS/Ada Version 8.0 Compiler Evaluation Report, L. Jun, October 1992

