
SEL Package-Based
System Development Process

Prepared by
Software Engineering Laboratory

February 1, 1996

SEL Package-Based System Development Processi 02/01/96

Table of Contents

Section 1—Introduction..1

Section 2—Process Overview..3

Life Cycle Overview..4

Project Management and Team Structure...5

Section 3—Requirements Analysis and Package Identification Phase..............................9

Overview...9

Key Activities..10

Methods and Tools ..12

Use-Case Identification..12

Candidate Package Identification...12

Reviews...13

Section 4—Architecture Definition and Package Selection Phase...................................15

Overview...15

Key Activities..16

Methods and Tools ..18

Package Evaluation and Selection Techniques...18

Prototyping ...19

Reviews...21

System Design Review..21

Section 5—System Integration and Test Phase..23

Overview...23

Key Activities..24

Methods and Tools ..26

Incremental Development..26

Testing Techniques..27

Configuration Management...28

Reviews...29

Operational Readiness Review...29

Products ..29

System Description..29

User’s Guide...29

SEL Package-Based System Development Processii 02/01/96

Section 6—Technology Update and System Maintenance Phase....................................31

Glossary...33

References..35

Figures and Tables

Figure 1. SRR Review Content...14

Figure 2. SDR Content..22

Table 1. Package-Based Development Phase Characteristics..5

Table 2. Recommended Candidate Package Identification Process...................................13

Table 3. COTS Product Evaluation Questions..20

SEL Package-Based System Development Process3 02/01/96

Section 1—Introduction

Today, commercial off-the-shelf (COTS) products are available to perform many of the
functions that previously required custom-built software components. These include
complex flight dynamics computational packages as well as general support packages,
such as database management systems and user interface packages. Open Systems
standards make it easier than ever before to combine compliant hardware and software
components to produce system solutions. Thus, software engineers now have more
viable options for rapidly constructing systems.

Although the use of COTS products has great potential for reducing the cost and cycle
time required to develop a system, it introduces more risk into the project. This risk is
largely due to a higher degree of dependence on external vendors and reliance on
unknown products. Traditional development projects, where the system is largely
developed from scratch (or from internally built reusable components), are very
independent; almost all risks are internal to the project because they deal with the
creation and integration of familiar software components. COTS-intensive projects, on
the other hand, must focus on evaluation of products, the establishment and execution
of solid business agreements with vendors, and flexible integration schedules to
minimize external risks. Likewise, system integration and testing methods must change
to deal with the black-box nature of COTS packages.

COTS-intensive projects are also affected by new and different cost factors. The costs
of product evaluation and integration and system testing now represent the bulk of the
internal project costs, as opposed to design and implementation activities. Additionally,
external cost factors, such as the cost of licenses and maintenance agreements with
vendors, play a significant role.

Goddard Space Flight Center’s Flight Dynamics Division (FDD) has a strong reputation
for successfully managing complex software development projects and delivering high-
quality systems. These projects have mainly involved custom software development with
a significant amount of reuse of internally developed software components. The
software engineering process, documented in the Recommended Approach to Software
Development, was specifically tailored by the Software Engineering Laboratory (SEL)
for FDD custom development projects.

As the FDD begins to move toward an era of rapid configuration of COTS, Government
off-the-shelf (GOTS), and custom-built reusable packages for mission support, the
software engineering process must be tailored to address the new risks involved in
COTS-intensive projects. To that end, the SEL has developed a strawman package-
based system development process for use on upcoming FDD COTS-intensive
development projects.

Because the FDD has had limited experience developing COTS-based systems, the SEL
has drawn on the experience of outside organizations to understand the challenges
associated with this type of development and to gather best practices used on COTS-

SEL Package-Based System Development Process4 02/01/96

based projects. Using a solid understanding of the FDD project domain, history and
environment, the SEL synthesized this information into a strawman process that can be
used to produce COTS-based systems in the FDD. This initial strawman process was
reviewed for feasibility by key FDD software engineers (both civil servant and
contractor) who have had some experience with COTS. The resulting strawman
process, presented here, is intended to be used on FDD projects that are integrating
COTS packages into their systems. As projects gain experience with the process, the
SEL will refine it to reflect local experience and document it in an official supplement to
the SEL Recommended Approach to Software Development.

The SEL Package-Based System Development Process presented here is based on input
from the following sources:

• A Proposed Guide for Package Integration by FDD Project Teams—D. Boland

• SEAS Package-Based Development Guidebook—D. Boland, D. Messent

• IMACCS Engineering Report— MO&DSD IMACCS Team

• COTS Integration and Support Mode—Loral Federal Systems

• Package-Based Development Methodology—CSC Catalyst Methodology

• A COTS Selection Method and Experiences of Its Use—J. Kontio, University of
Maryland

• COCOMO 2.0 User’s Guide—B. Boehm

• The Impact of COTS on Maintenance Organizations—Mitre Corporation

This guidebook presents a strawman development/integration process for delivering
systems that are largely composed of COTS (or GOTS) packages. It should be used in
conjunction with the Recommended Approach. On projects where the system will be
composed of COTS products and custom-built components, the Recommended
Approach should be followed for the custom-built part, while the package-based system
development process can be followed for the COTS part. It will be fairly easy to align
the two processes using the reviews as a guide. Because the package-based process is
new, it is extremely important to record lessons learned and provide feedback to the
SEL so that the process can be improved for future projects.

This document is organized similarly to the Recommended Approach. Section 2 presents
an overview of the process, including a life-cycle overview and a discussion of the new
roles and responsibilities of team members. The next four sections describe each of the
life-cycle phases in detail. Key activities, methods and tools, and management
checkpoints are presented for each life-cycle phase. Finally, a glossary of terms is
included at the end of this book. Readers should consult the glossary to ensure that they
understand the specific meaning of these terms as they are used in this book.

SEL Package-Based System Development Process5 02/01/96

Section 2—Process Overview

This section presents a life-cycle process for developing systems by maximizing the use of
COTS1, GOTS, and reusable packages of FDD origin. This package-based development
process is intended to help FDD project teams make effective use of reusable packages in flight
dynamics systems. It emphasizes risk analysis, continuous user participation, and project
management checkpoints. System engineering skills assume paramount importance in selecting
and then integrating the selected packages with minimum application-specific customization.

This life-cycle concept relies on the existence of packages that meet industry standards, and on
the use of prototyping for risk mitigation and effort estimation. Open System standards
promise that developers should be able to “plug and play” when package interfaces comply
with the same standard. Prototyping allows developers to identify and quantify risks.
Prototyping also allows customers to see system features and suggest improvements earlier in
the life cycle, while the cost of making changes is relatively low.

This process provides a framework for evaluating, selecting, and integrating packages by
outlining a systematic approach to creating an architecture that maximizes package use. It
requires end users to be part of the team from the outset, and it structures the development and
testing of the system on those aspects most meaningful to the users. Through demonstrable
prototypes and incremental development, the package-based approach gives management
insight into the actual use of the system to meet business objectives and provides a minimal set
of well-defined checkpoints for high-level decision making.

The use of acquired packages has implications for the decision-making process. In a
conventional development approach, clients can specify precisely what they want, and end
users can focus on ensuring that the developed system supports their desired procedures. In the
era of package-based solutions, clients must accept and use as a whole the packaged
functionality that best meets their overall needs, even if some aspects of it are not what they
desire most. End users must be part of the package selection process so that they can make
decisions about acceptability early in the process, and they must have executive backing to
make these decisions. Systems in which multiple COTS packages must interact are especially
vulnerable to the risks of poor decision making.

The remainder of this section presents an overview of the life cycle and a discussion of
project management and team structure.

1 The terms COTS and GOTS here refer to an unmodified version of an available package. A
package becomes difficult and expensive to keep current when knowledge of its inner
workings is required to integrate it into the system. Package suppliers typically make no
commitments that future versions of a package will be compatible with user-modified features.

SEL Package-Based System Development Process6 02/01/96

Life Cycle Overview
The package-based system development life cycle consists of four phases: requirements
analysis and package identification, architecture definition and package selection, system
integration and test, and technology update and system maintenance.

The life cycle begins with the requirements analysis and package identification phase. Here the
system requirements are analyzed and the overall problem area addressed by the system, called
the problem domain, is identified. COTS, GOTS, and reusable packages available within that
domain are then reviewed to identify those packages that could be used to satisfy the
requirements. Available packages receive at least as much attention as system requirements. In
this phase, developers and end users work together as a team to identify the system
requirements and the components that can satisfy them. They conduct a preliminary evaluation
of the candidate packages based on product information to narrow the choices to a small set of
likely choices that will be evaluated in full later. They create a set of use-cases (essentially
input-transform-output threads) that define system operational scenarios from the end user’s
point of view. They develop several high-level architectures (including candidate packages and
use-cases) that will satisfy the requirements and select a preferred strawman architecture based
on the paper evaluation of the packages. The strawman high-level architecture, a list of
candidate packages, and refined requirements are the products of the requirements analysis
phase.

In the architecture definition and package selection phase, the team thoroughly evaluates the
packages under consideration, selects the specific packages to be included in the system and
finalizes the architecture into which they will be assembled. Prototyping is used to gain
confidence that the selected packages can produce the solution, and to estimate the cost of
integrating a particular package into the system. Prototypes are demonstrated to show users
what they can expect and to evaluate cost trade-offs. Developers and users negotiate mutually
acceptable solutions in cases where packages cannot meet the original requirements and the
system requirements are updated accordingly. This phase results in the definition of the system
architecture, the selection of packages that will become system components, and a plan for
acquiring and integrating them.

In the system integration and test phase, the selected packages are configured to supply the
functionality identified in the use-cases. Glueware (e.g., wrappers, script files, drivers, and
format conversion software) is developed that provides the interface between packages and
any required functionality not available in an existing package. The capability of the system to
deliver the functionality required for each use-case is verified through testing. Developers
implement the use-cases with the selected packages, and testers conduct system testing for
requirements satisfaction. The result of this phase is the delivered system and an operational
readiness review.

In the system maintenance and technology update phase, developers insert new technology and
capabilities to satisfy new requirements, to maintain system compatibility with other package
updates, or to keep the system cost-effective. According to industry experts, a package-based
and standards-compliant solution should allow easy insertion of new technology. Most
enhancements should be able to be installed without affecting ongoing system operations, and
most packages should be able to be updated by simply installing the new version. In other

SEL Package-Based System Development Process7 02/01/96

words, Open System standards should allow users to insert compliant technology with minimal
effort. This, however, has yet to be experienced throughout the industry; thus the relative
amount of effort required to maintain COTS-based systems is still unknown. In any event,
enhancements will be scheduled based on changing requirements or package upgrades or
replacements. These enhancements are done following this same life-cycle process beginning
with the architecture definition and package selection phase, where the system architecture and
use-cases are modified. Then work proceeds to the system integration and test phase where
system changes are implemented and integrated into the existing system and the modified use-
cases are tested.

Table 1 summarizes the key parts of each phase.

Table 1. Package-Based Development Phase Characteristics

Phase Major Activities Products Management
Checkpoints

Requirements
Analysis and Package
Identification

• Requirements
analysis

• COTS package
survey and
preliminary
evaluation

• Requirements
• Strawman high-

level architecture
• Candidate

packages

• System
Requirements
Review (SRR)

Architecture Definition
and Package
Selection

• Package
evaluation

• Requirements
modification to
use existing
packages

• Prototyping

• Modified
requirements

• System
architecture

• Final packages

• System Design
Review (SDR)

System Integration
and Test

• Use-case
implementation

• Independent
testing

• Delivered system • User
demonstrations

• Operational
Readiness
Review (ORR)

Technology Update
and System
Maintenance

• Evaluation of new
products and
technology

• Enhanced system • User
demonstrations

Project Management and Team Structure

Management of a package-based development project is similar to managing a custom-
development project. All of the same good management practices apply here as well.
However, package vendors are a source of risk that needs special attention. When a
development team selects a package to be part of a system, it is buying a long-term relationship
with a vendor. Understanding a vendor's financial stability, track record, and long-term
strategy can be as important as understanding the vendor’s product. Not only must the project
develop a partnership with its vendors, but it must also develop a partnership with the
contracting and procurement side of its own organization. Project managers must acquire a

SEL Package-Based System Development Process8 02/01/96

level of business understanding well beyond that needed in conventional development to
successfully manage the project.

This life-cycle concept requires the formation of a single team consisting of end-users, domain
experts, software engineers, independent testers, a system administrator, and a procurement
official coordinated by a project leader. The team must remain intact for the entire system life
cycle and must be empowered to make decisions as to which system requirements are critical.
Many of the traditional roles change slightly or require different skills. In addition, the project
team includes two new roles, the system administrator and a procurement official, who now
play significant roles in comparison to the minimal support needed in these areas on traditional
software development projects. A capable and interested procurement official and systems
administrator will be great assets to the project. If possible, arrangements should be made to
have a single procurement official and a system administrator assigned to the project. Every
effort should be made to make them aware of project needs and to welcome them as members
of the team.

The primary project roles are described below:

User(s)—The users represent the people who will be using the system operationally. They
have a clear understanding of the mission requirements and the operational environment
and are empowered to negotiate requirements changes and represent the user
organization.

Domain expert(s)—Domain experts have extensive experience in the problem domain and
are aware of existing packages that are available within the domain. They have experience
with or are, at least, aware of other package-based systems within the domain from which
architectures can be reused.

Software engineer(s)—The software engineers or developers are responsible for
developing glueware and integrating the packages. They are responsible for engineering a
solution that meets the client’s and end-users quality expectations. It is best if the
software engineers have some experience with COTS integration or have specific
experience with the packages being used.

Independent tester(s)—The independent testers are responsible for verifying that the
system meets its requirements. Experience with the application domain, incremental
testing, and black-box testing is helpful.

Procurement officer—The procurement officer is responsible for obtaining demonstration
copies for evaluation; purchasing selected products and negotiating for extensions of
demonstration copies until official receipt of product; monitoring and extending license
expiration dates. This person is responsible for keeping the project point-of-contact
informed of expected product arrival dates and the terms of the contracts.

System administrator—The system administrator is responsible for installing all
COTS products as they are received and setting up accounts as they are needed.
This person will also help trouble shoot problems with hardware/package
compatibility. It is critical that the system administrator be available to provide
services immediately upon request, so it is best if the administrator is dedicated to
the project.

SEL Package-Based System Development Process9 02/01/96

Because time is short and there is much to learn and communicate on a COTS-based project, it
is best to assign a small full-time team to the project. Although the number of people allocated
depends on the project time frame and staffing estimates, experience has shown that it is best
to limit project size to no more than 10 people (including civil servant and contractor leads). If
more work must be done in less time, it is recommended that a small “core” team be
established and that additional personnel support this core team..

Clear team communication is essential. Because of the fluid nature of the solution and the
newness of the packages being used, the team will be more productive where there is ample
opportunity to share experience and knowledge. Intra-team communication should be informal
but ample. The entire team should meet regularly to discuss the entire project. These
meetings provide a forum to report progress and to share ideas about what to do next, offer
suggestions across the entire activity, and generally work together. It also allows the project
leaders to communicate system/requirements changes and changing project goals and priorities
with the entire team at once. Project teams should also use electronic mail, bulletin boards,
and news groups to keep team members informed on a daily basis. When possible, all project
work should be conducted in a single facility. This will facilitate communication between
individuals almost continuously, leading to faster resolution of problems.

COTS-based development projects typically have very tight time schedules. Because of this,
the project must be controlled with a minimum of bureaucracy to allow the team to focus on
the technical solution. The project leader should keep an on-line log which records the
technical status of the project, including schedules and problem tracking. Managers should
have access to this log so they can stay informed of the current state of progress on the project
at all times. A one- or two-line weekly summary of project progress that highlights problem
areas can be included in the log to replace traditional weekly progress reports. Since the
technical team is given maximum autonomy and authority to act, this information enables
managers to retain responsibility. Likewise, a minimum set of management checkpoints are
built into the development process to allow for objective progress assessment and technical
review.

SEL Package-Based System Development Process11 02/01/96

Section 3—Requirements Analysis and Package
Identification Phase

Requirements Analysis and Package Identification
Phase Highlights

Input: Customer requirements (high-level end items)
Information on available packages

Output: Strawman high-level architecture(s)
Refined requirements and use-cases
Identified candidate COTS packages
Requirements traceability matrix

Checkpoint: System Requirements Review (SRR)

Steps: Analyze requirements
Develop high-level architecture
Identify use-cases
Identify candidate packages
Hold requirements review

Overview
Requirements analysis and package identification is the process of understanding the system
requirements in the context of the set of software packages available within the problem
domain. It is analogous to the requirements analysis phase of conventional development, but it
emphasizes crafting the system at a package level rather than a line-of-code-level.2 All domain
components are treated as acquired packages, whether they are obtained from an in-house
component library or from an outside party. The goal is to build an acceptable system from
these packages without modifying them and without generating more than a minimum amount
of new code.

This phase begins with identifying the domains relevant to the problem and understanding the
types of packages available in those domains. Information gathering and analysis activities
include vendor contacts, personal contacts, and Internet browsing. The primary objective of
this phase is to build a high-level architecture that maps “non-solution-specific” package types
to high-level requirements. A high-level architecture in this context is simply an arrangement of
the available types of domain packages into a structure deemed appropriate for a solution,
without a judgment yet as to the quality of that solution.

2 See “Integration of a Satellite Ground Support System Based on Analysis of the Satellite
Ground Support Domain,’’ by R. D. Pendley et al.

SEL Package-Based System Development Process12 02/01/96

The first step is partitioning the high-level requirements according to the types of packages
expected to be available in the relevant problem domains. Then, the team adjusts the
requirements to maximize package use. This is a paradigm shift from custom development.
Developers and clients must be prepared to negotiate requirements statements. To avoid a bias
risk, they must be careful not to redefine requirements so specifically that only one particular
product is suitable.

The team sets out deliberately to create an architecture that will promote the use of acquired
packages. This architecture will incorporate patterns based on the experience of team members
with other systems that use packages. Reuse of appropriate high-level architectures is critical
at this juncture. The team should expect to review and refine several strawman architectures to
arrive at a reasonable candidate architecture that can be mapped to available packages running
on suitable platforms. If the team concludes that no available package will meet the
requirements of one or more of the logical processes, then they provisionally schedule that
process (or processes) for custom development, and analyze the requirements to determine
what changes would be needed to allow an existing package to be used.

At this point, the team identifies use-cases that define the operational scenarios for the system
and maps them to the requirements. (Use-cases are simply a way of putting structure around
an operational scenario and mapping it more directly to software components and test cases.)
The use-case transforms are then mapped to the proposed COTS and reusable packages.
Various alternatives are evaluated to minimize cost and maximize system acceptability and
quality. Developers screen the candidates by conducting a preliminary (paper) evaluation to
arrive at a manageable number of candidates.

At the end of the phase, a requirements review is held with management to obtain approval for
the team’s plan of attack. A strawman high-level architecture (including candidate packages
and use-cases) and refined requirements are the products of the requirements analysis phase.

Key Activities

Analyze the users requirements. Developers work with users to understand what
products and services are required. Requirements language is clarified to more
accurately document the users’ requirements.

Identify use-case(s) for each high-level requirement. These use-cases, which define
an input-process-output thread, will be used throughout the project to guide prototyping
for product evaluation and later to test the integrated system.

Identify COTS packages that, based on vendor documentation and/or prior in-
house experience, could be used to satisfy each requirement. Prepare a COTS
product information database to track key information and evaluation criteria. Store
key information about candidate packages in the database; e.g., vendor, cost,
availability, track record, amount of in-house experience, sources of information.

Negotiate with users to revise those requirements (and use-cases) that cannot be
completely satisfied with existing packages. Identify and highlight any requirements

SEL Package-Based System Development Process13 02/01/96

that will require custom software development and document the rationale for these
decisions.

Conduct a quick paper evaluation of the candidate COTS packages to narrow the
choices down to a reasonable set of best candidates that will be evaluated fully in the
next phase.

Establish a relationship with a procurement official within your organization and
arrange to obtain evaluation copies of each COTS product to be evaluated.
Establish a technical point-of-contact at each vendor to answer questions and provide
technical help as needed; separate technical contacts may be needed when more than one
package is being used from the same vendor. The procurement official should also
establish a relationship with his/her counterpart at each vendor; this is typically a single
point-of-contact.

Develop a high-level strawman system architecture(s). Prepare a high-level diagram
that shows the major components of the system and how the candidate packages would
be used or connected to satisfy the system requirements. Also document any alternative
architectures under consideration based on package selection.

Produce a traceability matrix that maps use-cases and candidate COTS products
to each requirement. (At this point, there may be more than one COTS product
identified per requirement.) If possible, also map the specific capabilities of each COTS
package to the requirements. This matrix will be used throughout the project to control
the requirements and to schedule COTS package evaluation, procurement, integration,
and testing.

Prepare a preliminary cost estimate for the remaining phases:

• Estimate the cost of the product selection phase based on the number of COTS
products to be evaluated.

• Estimate the cost of system integration and test phase for COTS-based portions of
the system assuming an average amount of risk for all COTS products.

• Estimate the cost of full development for custom-developed portions of the system
using the standard SEL cost model.

Hold a requirements review, where management and senior technical experts review
the requirements and operational scenario (use-cases), the preferred high-level
architecture and alternatives, the candidate list of COTS products, and the preliminary
cost estimate for feasibility and completeness. Rationale for custom development should
be clearly explained. (See Requirements Review content later in this section.)

SEL Package-Based System Development Process14 02/01/96

Methods and Tools

Use-Case Identification
A use-case is a way of specifying the behavior of the system as a dialog between the user and
the system. It is a technique, which has evolved over the last few years in the software
industry, that fits in naturally with the COTS approach. Structuring project activities around
use-cases helps center the team on the user’s perspective of the packages to be included in the
system and provides a natural framework for package evaluation and later incremental
development and system testing.

The form of documenting use-cases can range from simple text descriptions to elaborate
descriptions of processing scenarios that include prototypes of screens. The team identifies the
system products and inputs for each use-case, then determines the transforms for generating
the expected outputs from the given inputs. The transforms map the user’s actions on the
system to the system’s response to those actions. Use-cases should focus on what the user
needs to achieve, not how they are currently doing it. In other words, the goal is not to simply
automate an existing process, but to improve the entire activity.

Candidate Package Identification
Candidate package identification begins with a market survey to identify COTS, GOTS, or in-
house packages that can play various functional roles in the system. These roles, which are
initially determined by grouping the requirements into related functional sets, will evolve as
more is learned about the available packages. Team members survey trade journals, vendor
literature, and the Internet for possible packages. They also interview vendors to gather
information. In the process of the interview the vendor usually asks several questions to
determine how the project wants to use the package. Take good notes; the vendor’s questions
will point to key things to consider about the product.

Then the team conducts a paper evaluation to screen the candidates. The goal is to select the
two or three best candidates for each type of package needed based on the information
available about the products. These packages will be more rigorously evaluated in the next
phase against the evaluation questions provided in Section 4 under Package Evaluation and
Selection Techniques. These questions may also be used to guide the paper evaluation.

Table 2 outlines a candidate package evaluation and selection approach. The overall
evaluation approach is iterative; a preliminary evaluation is done during requirements analysis
and a second round of more detailed evaluation of the identified candidates is performed in the
next phase. For more information on package evaluation, see the CSC Catalyst methodology.

SEL Package-Based System Development Process15 02/01/96

Table 2. Recommended Candidate Package Identification Process

Step Comments

1. Derive evaluation criteria
from high-level
requirements.

The team must distinguish between essential, optional, and
“nice-to-have” requirements. For a system to be cost-
effective, it must be driven by the essential requirements, not
by one or two spectacular optional features. A good rule of
thumb is that essential features are those that are more
important than the price of the product, and optional features
are those that are less important.

2. Define a weight/ranking
scheme.

A simple measurement of suitability, e.g., a 1-to-5 scale, for
each feature will help the evaluation team focus clearly on
understanding feature differences and will help eliminate
bias. Important categories to consider include functionality,
usability, compliance with applicable standards for ease of
integration, and documentation of the feature. The team
must rank each product overall on availability of target
platforms, cost, licensing issues, yearly support costs, and
maturity.

3. Screen as many products
as possible.

An initial market survey might turn up far more candidate
products than can be investigated in detail. Preliminary
screening against the most critical requirements will identify
candidates for closer evaluation.

4. Examine the screened
packages in terms of
handling the use-cases
for the system under
development.

Candidates that pass the initial screening should be
examined against the use-cases. The team should not rely
on canned vendor demonstrations to judge the acceptability
of the product. They should evaluate the product themselves
in the environment or ask the vendor to demonstrate the
product against a specific use-case.

5. Identify candidate
packages and document.

On the basis of the evaluations, the team can identify those
packages that could be used to build the system. They
should document the reasons they selected each package
and the reasons they ruled out others.

Reviews

At the end of the phase, a system requirements review is held with management to obtain
approval for the plan of attack. The team should highlight any requirements changes needed to
allow the system to be built from available packages. They should provide an analysis of the
reasons for the suggested requirements changes, including a discussion of the results of the
package screening. The team should assess the impact on the business process of changing or
eliminating requirements. They should also provide an estimate of the cost of developing
custom software to meet the requirements that cannot be met by any existing package, and
they should present the costs and risks of alternative strategies for meeting the requirements
(such as making modifications to an acquired package). Figure 1 presents the material to be
covered at the SRR.

SEL Package-Based System Development Process16 02/01/96

SRR CONTENT

Agenda — outline of review material

Introduction — background of the project and system objectives

High-level requirements — overview of requirements, highlighting any changes needed to
maximize existing package use

Operational scenarios — use-cases for each requirement or groups of requirements

Package analysis — types of packages needed; list of packages considered; and brief
summary of top candidates to be evaluated in next phase

Strawman system architecture — high-level diagrams of the software system showing
interfaces between existing packages and custom-developed components; description or
diagram of hardware to be used; and alternatives

Requirements traceability matrix — mapping of requirements to use-cases and system
components (packages)

Risk analysis — discussion of each major risk and mitigation strategy

Project estimates — preliminary cost and schedule estimates

Issues and concerns — Issues and problems beyond the control of the project team

Figure 1. SRR Review Content

SEL Package-Based System Development Process17 02/01/96

Section 4—Architecture Definition and Package Selection Phase

Architecture Definition and Package Selection
Phase Highlights

Input: Strawman high-level architecture(s)
Refined requirements and use-cases
Identified candidate COTS packages
Requirements traceability matrix
Demonstration version of candidate packages

Output: System architecture
Refined requirements and use-cases
Final COTS packages
Revised requirements traceability matrix

Checkpoint: System Design Review (SDR)

Steps: Evaluate and select packages
Develop prototypes
Procure packages
Revise requirements and use-cases
Hold a proposed solution review

Overview

In the architecture definition and package selection phase, the team thoroughly evaluates the
packages under consideration, selects the actual packages to be included in the system and
finalizes the architecture into which they will be assembled. Prototyping is used to gain
confidence that the selected packages can produce the solution, and to estimate the cost of
integrating a particular package into the system. Prototypes are used to demonstrate what
users can expect and to evaluate cost trade-offs. Developers and users negotiate mutually
acceptable solutions in cases where packages cannot meet the original requirements, and the
requirements and use-cases are revised accordingly. This phase results in the definition of the
final system architecture and the selection of packages that will become system components.

Much of the work in this phase centers around learning enough about the candidate packages
to select the best packages to meet the requirements and to understand the risks involved in
working them (in order to plan the rest of the project).

Based on the high-level customer requirements for the system, the team determines the
evaluation criteria and a “scoring” approach for the package selection process. This second
round of evaluation is more elaborate than that done in the previous phase, focusing on
obtaining real experience data from vendor references, from other in-house users, and from
prototyping to validate vendor claims. Fast prototyping is done within the context of a
demonstration laboratory, which consists of one or more platforms that match as nearly as

SEL Package-Based System Development Process18 02/01/96

possible the intended hardware and system software combination planned for the system.
Finally, costs are analyzed to determine the relative costs of acquiring and integrating the
technically adequate packages.

At this stage, the team must establish vendor commitments and set up issue resolution
mechanisms that will be needed as development continues. It is important to set up both a
point-of-contact for the procurement officer and a technical support point-of-contact for each
vendor/product.

The team then documents the risks associated with each candidate package and analyzes the
refined requirements in light of the customer’s original high-level requirements. If the initial
requirements were too detailed, they may rule out a package solution entirely or may need to
be revised to allow one. Quality and cost-effectiveness—not perfection—are the goals of
package-based development. By the end of this phase, the team has selected primary and
backup packages for each function. The team should document evaluation procedures and
keep all evaluation materials; it is important to know why the team made the choices it did.
This information should go into an organizational library devoted to building and maintaining a
knowledge base about the packages available within the domain.

At this stage, the team has chosen the architecture and the packages, which together constitute
the proposed solution. The proposed solution plays approximately the same role in package-
based development that a critical design plays in conventional development, and its availability
provides a project checkpoint. Therefore, this phase terminates with a system design review of
the proposed solution.

Key Activities

Assign a systems administrator for the project. In this phase, the system
administrator will be responsible for installing all evaluation copies of COTS products as
they are received. The administrator also helps trouble shoot problems with
hardware/package compatibility during prototyping.

Systematically evaluate each of the COTS products identified in the previous
phase. It is extremely important to evaluate each product thoroughly in order to make
an informed choice. For each package under consideration, execute the demonstration
version, review user documentation, and contact the vendor technical support contact to
gather the product evaluation information (see Package Evaluation and Selection
Techniques described in the Methods and Tools subsection), which will be used to
determine the suitability and level of risk associated with the COTS package. Update
the product information database based on hands-on evaluation.

Prototype use-cases, paying particular attention to interfaces between COTS
products. Evaluate COTS performance and ease of integration, and document the
results in the COTS information database. Decide on the degree of integration that is
desired. Contact the vendor technical support point-of-contact as needed to obtain help
and to evaluate the quality of technical support available. Update the product
information database based on hands-on experience.

SEL Package-Based System Development Process19 02/01/96

Select the COTS products to be used. Based on the results of COTS evaluation and
prototyping, select the best COTS products for the system. Strive to minimize risk
while optimizing the trade-off between the number of COTS products required and their
associated cost and ease of use and ease of integration. Consider requirements coverage
and the amount of custom code needed to integrate a package. Also, compare the
short-term and long-term licensing costs against integration costs. Document the
rationale for selecting or rejecting the COTS package in the COTS information
database.

Arrange to procure the selected COTS. As each COTS product is selected, contact
the procurement official to begin procurement. Because this process takes time, start as
soon as possible for each product to maximize the number of COTS products that will
be received by the start of the integration phase.

Refine the system architecture to reflect the final COTS components. Update
system architecture diagrams to show how COTS packages will be integrated to form
applications/subsystems.

Update the requirements traceability matrix to reflect the final COTS product to
requirement mapping. This assures that all requirements are covered. Negotiate
changes as necessary based on COTS product evaluation. Adjust use-cases if necessary.
This matrix will be used during the next phase by the developers to guide incremental
integration and by the testers to identify which use-cases should be used to test each
build.

Prepare a COTS information summary spreadsheet or database for the system
that includes, for each COTS product, the vendor name, procurement information
including expected date of receipt, risk factor ratings, and other products with which it
must interface. This spreadsheet will serve as the basis for planning and managing the
integration as the expected order of receipt fluctuates in the procurement process.
(Note: The requirements matrix, the COTS product information database, and the
COTS information summary database can be stored in a single database if that is easier
for the project leader.)

Revise the cost estimate based on the actual COTS products being acquired and
integrated. Determine cost factors based on the level of risk assigned to each COTS
product as a result of product evaluation and prototyping. Estimate system integration
and test phase costs and custom development costs separately.

Develop a system implementation/integration plan. Using the requirements matrix
and the expected order of receipt (stored in the COTS summary spreadsheet), define the
nominal order in which the required functionality can and should be implemented. This
incremental development should be driven by the use-cases, where each increment
enables additional instances of use of the system. Therefore, functions that require
simple uses of COTS should be implemented before those that require complex
interfaces and glueware.

SEL Package-Based System Development Process20 02/01/96

Identify functions that depend on separate sets of COTS packages; these can be
scheduled in parallel. Divide the functionality into builds for large/complex subsystems
or applications. Small/simple applications should be completely integrated and delivered
to the testers in a single delivery, whereas large/complex applications should be
integrated and tested in builds. Based on the number of people/teams available to work
on the project, assign specific use-case (functionality) implementation via COTS
integration to project team members and set schedules. Document this plan in a table
form that clearly defines dependencies and is easy to change as procurement problems
arise and order of receipt changes or as technical problems are encountered.

Hold a design review, where management and senior technical experts review the final
proposed architecture, the COTS products selected, and any requirements changes
made. The requirements matrix and COTS information database are reviewed for
completeness. Potential risks are highlighted and the project estimates and plan are
reviewed for feasibility.

Methods and Tools

Package Evaluation and Selection Techniques

This second round of package evaluation focuses on obtaining and analyzing real
experience data about the products. The evaluation should assess functional sufficiency
as well ease of integration and use. The primary focus of the evaluation, which
unquestionably requires running the software and exercising its features, is to determine
whether or not it does the job needed. This includes accuracy as well as just being able
to produce the output. But there are other important factors to consider, such as:

• How long is the vendor likely to be in business?

• How long will the vendor support this product?

• Is there any in-house experience with the product?

• What kind of help is available to learn about the product and to solve problems?

Remember that the best products for this type of effort are those whose vendors are
willing and able to support the project on its terms and schedule (tight schedules do not
allow time for technical support people to send software problem reports to a separate
engineering group for inclusion in some later version of their product).

Evaluation criteria should reflect customer requirements, external interface requirements,
processing performance requirements, and knowledge of the underlying computer system.
Maximum usability and compliance with computing industry standards are also important
evaluation criteria. Vendor characteristics such as vendor stability, quality of documentation,
and availability of user help must be part of the evaluation criteria. Table 3 presents a sample
list of evaluation questions.

This information must be gathered from a variety of sources. It is extremely important
to check out vendor references. Contact other organizations that have used/integrated
the product. They will confirm or deny the vendor’s claims. Once the product passes

SEL Package-Based System Development Process21 02/01/96

these tests, then check it out first hand. Obtain a demonstration copy (and associated
documentation) and prototype the product’s expected use to assess its ease of use and
performance. External interfaces must also be evaluated. Test vendor claims that
products will interface with programs written in higher level languages (C or
FORTRAN); validate two-way communication.

The evaluation should also include a ranking of the packages on the basis of relative cost. The
cost of a package can depend on its intended use within the system (e.g., the number of copies
that must be acquired). The cost of integration will vary with the maturity of the package and
whether the package is in the heart of the architecture or on its periphery. “Hidden” costs exist
as well, such as annual support, runtime licenses, end-user documentation, and upgrade costs.
It is a good idea to have the procurement official work as part of the evaluation team to advise
on licensing and contractual arrangements with potential vendors.

Following are package selection “dos and don’ts” based on actual project experience:
• Don’t buy version 1.0 of any product if it can be avoided.

• If there is a choice, don’t buy a product for which an evaluation copy is not
available.

• Always obtain documentation with an evaluation copy.

• Arrange to keep source code in escrow for products where there is a significant
risk that the small vendor may go out of business.

• Purchase extra vendor technical support for high-risk products; in these cases, be
sure to check out references to be sure this is a technically sound vendor who will
deliver the required support on time.

Prototyping

Prototyping, in this context, is a “quick and dirty” implementation of a system capability using
COTS packages. It gives the team first hand experience with candidate packages. Prototyping
is a valuable tool for understanding and mitigating risks. It allows developers to

• Determine that a package works as expected

• Determine that package integration is routine and not a major effort

• Determine the platform size, data model, and communication topology

• Demonstrate that the system will perform to the end-user’s expectations

SEL Package-Based System Development Process22 02/01/96

Table 3. COTS Product Evaluation Questions

Technical functionality:

• Does the package work as expected?

• Does the package completely satisfy a particular function? Or does it need to be
augmented with another product?

• Does the package allow for future expansion?

• Is the source code available for purchase? If so, what standards does it follow (e.g.,
ANSI, POSIX)?

• What is the vendor’s policy on software upgrades? Are they willing to provide software
fixes within the project schedule?

System compatibility:

• Is the package compatible with the platform(s) and operating system(s) on which it will
be installed?

• What hardware/communications setup does it require?

• What ancillary packages does it use or depend on (e.g., DBMS)?

• How similar is its user interface to the other packages?

Ease of integration/availability of information and support:

• Is there in-house experience with this product?

• What kind of documentation is available? Is it clear and accurate?

• Does the vendor have an interactive, timely support/help desk?

• Is there training available?

• Are error messages provided?
 - Are they comprehensive? Are the clear? Are they useful?

• Is intermediate (debug) output available?

Cost and schedule:

• When will the product be available?

• What licensing arrangements are available? How much do they cost?

• Is there a cost for technical support?

• How much does training cost?

• Are there any run-time royalties or fees?

Vendor performance/reliability:

• How long has the vendor been in business?

• What is the breadth of the vendor’s customer base?

• What plans does the vendor have to support/replace the package being procured?

• What is the vendor’s business forecast?

• Does the vendor have references from previous customers?

• Does the vendor have a good track record for: On time deliveries? Good, timely
technical support? Quality products?

SEL Package-Based System Development Process23 02/01/96

Fast prototyping helps to determine high-level acceptability of various candidate solution
packages. It helps the team understand how a package can be used within the system and how
much effort it will take to incorporate. The fast prototyping approach is purely pragmatic and
should not result in software that becomes part of the developed system.

Prototyping is also important for arriving at effort and schedule estimates for the
implementation. By giving the team direct experience with the type of package to be used in
system implementation, prototyping allows development managers to measure the effort
required to integrate and tune the package. This in turn can be extrapolated to an estimate of
the effort required to fully incorporate the package into the final system. Prototyping is useful
in later phases for proof-of-concept, including sizing and performance issues.

Prototyping must be directed. The team writes a plan documenting the goal and any
discrimination criteria for evaluation. The plan is a high-level one at the start but becomes
more specific as system development proceeds. The results of prototyping should be included
as part of the product evaluation documentation.

Prototyping should be done within the context of a system demonstration laboratory, which
should consist of one or more platforms that match as nearly as possible the intended hardware
and system software combination planned for the system.

This hands-on evaluation of candidate packages should confirm products that are well
developed and identify those that monopolize system resources or change them to suit their
own needs (e.g., X-resource allocation). Problems of this nature are often not detectable until
the product is installed, regardless of the industry standards it follows. In addition, prototyping
should test flexibility, configuration, and the graceful handling of failures. It is also an
opportunity for the team to learn about interdependencies and conflicts among different
packages: selecting one COTS product can impose derived requirements on another.

Reviews

System Design Review

Because end-user and client technical representatives are part of the package-based
development team and therefore familiar with the proposed solution, the system design review
is primarily for the benefit of the upper management. If prototyping was used on the project, an
option for the review is a demonstration of the prototype to give a first-hand view of how the
system will be used to meet business requirements. Other topics presented at the review should
include the list of refined requirements, the final architecture, the list of selected prime and
backup packages, and the use-cases identified for the system. The plan for incremental
development, the testing approach, and risks and risk mitigation plans are also important
review items on which to obtain approval at this time. The goal of the review is to obtain the
concurrence of upper management on the plan for the system itself and on the plans for its
integration and test. Figure 2 presents the material to be covered at the SDR.

SEL Package-Based System Development Process24 02/01/96

SDR CONTENT

Agenda — outline of review material

Introduction — background of the project and system objectives

Requirements changes — summary of requirements changes negotiated since SRR

Operational scenarios — modified use-cases for changed requirements

Package analysis — list of packages evaluated; one slide per package summarizing
evaluation criteria; list of packages selected for procurement and rationale

System architecture — high-level system diagram and diagrams of the major components
showing interfaces between existing packages and custom-developed components

Requirements traceability matrix — mapping of requirements to use-cases and final
system components (packages)

Risk analysis — discussion of each major risk and mitigation strategy

Project estimates abd inplementation plan — revised cost and schedule estimates; high-
level implementation plan showing procurement and integration schedule for COTS
products

Issues and concerns — issues and problems beyond the control of the project team

Figure 2. SDR Content

SEL Package-Based System Development Process25 02/01/96

Section 5—System Integration and Test Phase

System Integration and Test
Phase Highlights

Input: System architecture
Refined requirements and use-cases
Executable COTS packages
Requirements traceability matrix

Output: Updated system architecture
Updated requirements and use-cases
Updated requirements traceability matrix
Delivered system

 System Description and User’s Guide

Checkpoints: Demonstrations to users

 Operational Readiness Review (ORR)

Steps: Install packages
Implement/integrate use-cases incrementally
Demonstrate capabilities to user
Inspect and certify project-developed components
System test builds and complete applications
Conduct end-to-end system testing
Revise requirements and use-cases
Demonstrate the system

Overview

In the system integration and test phase, the selected packages are configured to supply the
functionality identified in the use-cases. Glueware is developed to provide the interface
between packages and any required functionality not available in an existing package. The
system is constructed incrementally, providing increasingly more user capability. The ability of
the system to deliver the functionality required for each use-case is verified through
independent testing. Developers implement the use-cases with the selected packages, and
testers conduct system testing for requirements satisfaction. The result of this phase is the
delivered system.

During this phase, developers build the system by gradually integrating use-case functionality
using the blueprint provided by the system architecture. The order of implementation/
integration is based on the system implementation plan, which was initially prepared in the
previous phase. This plan is constantly adjusted as COTS package delivery schedules change.
As the functions are implemented, team members review the result of each use-case
implementation to ensure that it meets the requirements. Use-case demonstrations give the end

SEL Package-Based System Development Process26 02/01/96

users the ability to see the system perform as it is taking shape and provide the basis for
ongoing testing in parallel with system integration.

The system is built through graphical user interface (GUI) development, COTS and reusable
package integration, customization (glueware generation), and, if necessary, application-
specific development. Reused and/or COTS packages usually require some glueware to work
together; however, the system should comprise very little glueware and application-specific
code. Furthermore, application-specific code and glueware are developed using standard
compilers, tools, and so forth to enhance later reuse.

Throughout system integration and testing, configuration management of both the glueware
and the COTS products is essential. Standard configuration management techniques used on
software development projects are applicable. The development of glueware and of any custom
software required in lieu of a preexisting package proceeds through standard component
development practices.

Performance and system testing occurs concurrently with system development. The use-case
implementation allows testers to certify that the system meets its requirements in increments.
Tools are used to allow the rerunning of tests for regression testing in an optimal manner.
System testing is done primarily at the black-box level; use-cases are tested end-to-end,
verifying the interfaces between packages and system output. Closer testing is done only when
a problem is found or when the package has been modified.

This phase culminates in the delivery of the completed system. At the customer’s option, the
development team may hold an operational readiness review and/or a demonstration of the
system. Such a review confirms that the system meets its original end-item requirements and is
now robust enough for the client to use. The review includes a summary of system testing
results.

Key Activities

Establish configuration management procedures and libraries. Vendor-supplied
files associated with each COTS package should be stored in a separate configured
library that is managed by the system administrator. All project-produced components
should be placed in configured libraries organized by system architecture and component
type and managed by the project configuration manager (see Configuration
Management under the Method and Tools subsection later in this chapter).

As COTS packages are received:

• The system administrator installs the package and executes it to become
somewhat familiar with the package and to be sure that it interacts with its
environment (hardware, operating system, etc.) properly. The administrator
contacts the vendor technical support point-of-contact to resolve any problems
encountered and notifies the project leader of any unresolved problems.

• The project leader schedules the package for integration. Using the
requirements matrix and current integration plan, make any adjustments necessary

SEL Package-Based System Development Process27 02/01/96

and identify those capabilities that can be implemented. Make team assignments
accordingly.

• Developers familiarize themselves with the package. Developers who must
integrate the package in their part of the system should get familiar with the
package, especially if they were not involved in the evaluation and selection of the
package. Developers should spend a few days going through the tutorials and
user’s guide and then running the package to see what it can do and how it works.
This may seem like a waste of time, but don’t skip this step—experience has shown
that it is extremely important to have hands-on experience with the packages before
integrating them.

For each application/build, the developers implement the functionality required to
support the use-cases in the order specified in the system implementation/
integration plan as follows:

• Develop any glueware (utilities, scripts, data files, and/or interface software)
required to make the COTS package perform the intended function.

• Iteratively integrate the glueware and the COTS package(s) and test until the
system works as intended. Call on the system administrator or vendor technical
support contact as needed to help resolve perplexing problems.

• Demonstrate the use-case/functionality to the user. Respond to user concerns
and suggestions and identify any developer misinterpretations of the requirements.
Make modifications, retest, and demonstrate again.

• When the user and developer are satisfied, conduct a peer inspection of the
glueware to be sure that it meets project standards for maintainability, reliability,
etc. Inspect all utility software, scripts, or data files that govern the way a COTS
product operates as part of the system. In addition, all modifications to reusable
software or vendor products should be inspected. Make any modifications
necessary as a result of the inspections and certify the components.

As applications/builds are certified, submit the glueware components to the
configuration manager for insertion into the configured library. New components
being added to the configured library require a Component Origination Form (COF).
Report any future changes made to components in the configured library on Change
Report Forms (CRFs).

When an application or build has been completely integrated, deliver the application (or
build) to the independent test team for system testing.

Testers develop test cases and prepare test data sets for the use-cases. This is done during
the early part of the phase while the developers are integrating/implementing the initial
increments of the system. Test cases are prepared in the order indicated in the integration plan
so that those needed to test the early builds are ready when testing begins.

The testers conduct functional testing of each delivered application or application build
based on the use-cases for the functionality included. This is very similar to testing

SEL Package-Based System Development Process28 02/01/96

custom-developed software systems with one exception. Because there may be no source
code for the COTS packages, intermediate output may not be available. Therefore, test cases
must be designed to evaluate output between packages. Internal calculations are assumed to
have been tested by the vendor.

Track problems to closure. The manner in which problemsare tracked and resolved is
dictated to a large extent by the short time frame available and team composition. Optimally,
each team member should resolve his or her own problems as they arise. The team leader
should keep track of when various functions are expected to “come on line”. The resolution of
any problem that interferes with that schedule is elevated to the project “To Do List”
maintained by the project leader and reviewed at the weekly meeting.

Report and fix test case failures using the same procedure used for custom-developed
software. Because of the short time frame and the small stable team, assign errors to the
original developer/integrator to fix.

When the system is complete, the testers run complete end-to-end tests to verify system
performance and continuity. These test cases are then demonstrated to the users for final
acceptance at the Operational Readiness Review (ORR).

Prepare a system description that documents the final system architecture and a user’s
guide for the final system. The system description should focus on providing key
maintenance and configuration management information about the the major system
components, especially COTS products. The user’s guide should focus on describing how to
run the various use-cases and how to interact with the various system components. (See the
Products subsection later in this chapter for suggested document content.)

Obain user acceptance and deliver the system. Hold an ORR and/or demonstrate the
system to the user.

Methods and Tools

Incremental Development

In a conventional project, incremental development generally implies software builds that each
add a segment of functionality to the system. In package-based development, incremental
development takes the form of adding layers of functionality that map to use-cases. That is, the
system increments are treated as enabling additional user capabilities and system functions,
rather than as adding a particular set of modules or subsystems.

As an example, an early version of a system may use a package to generate only a certain type
of product. Later increments of the system may add use-cases corresponding to other
products; each new product may require an additional interface among the COTS products in
the system, rather than expansion of the software with new functionality as in the traditional
software build.

An example of incremental development via use-cases is a system in which a collection of
packages generate spacecraft antenna contact predictions. The first use-case might cover only

SEL Package-Based System Development Process29 02/01/96

nominal scenarios and generate products in a rudimentary format. Subsequent use-case
implementations might add uses of the packages to handle contingency scenarios, error
recovery, and more sophisticated forms of output such as polar plots. Other use-case
implementation might require the integration of another package into the system, development
of additional glueware to handle another type of interface between existing packages, or the
validation of a previously unused package capability to produce a new system product.

Testing Techniques
Different levels of testing are required, depending on the level of component reusability. New
packages acquired for this project must be product qualification tested to verify that they work
as expected. This step is not usually needed for mature products that have been used before
in-house or internally-built reusable packages. Thus, developers begin with the assumption
that the supplied component has been fully tested and is working; they perform integration
testing to ensure that the component works within the system and that the interfaces are
functioning as stated. Independent system qualification testing ensures that the system meets
its requirements.

Product Qualification Testing

Product qualification testing verifies that an acquired package works as expected. This is
done to some degree in the previous phase during the package selection process, when an
evaluation copy of the product is tested to see if it meets requirements. However, once
the official version of the package is received from the vendor and installed, its basic
performance should be verified through product qualification testing.

The system administrator should test the package after installation to verify that it works
as expected with the system hardware. To do this the system administrator should
execute demos and tutorials provided with the package. If any problems are uncovered,
the system administrator should work with the vendor technical contact to resolve them.

The developer assigned to integrate the package completes the product qualification
testing by executing some or all of the prototype test cases set up in the previous phase to
be sure that nothing has changed and it still meets requirements.

Integration Testing

The type of integration testing needed and the stage at which testing begins depend on the
component’s position in the hierarchy of solution components. When an entire function is
reusable or COTS, the lowest level of testing required is module testing to ensure that the
interface satisfies the requirements. Thus, when assembling a system from preexisting
packages which by definition meet their requirements (verified during product evaluation),
testing focuses exclusively on the integration of those packages to produce required end
items. The point of the testing is to verify that the integrated system is robust and that it
performs the functions allocated to it.

System Qualification Testing

System-level testing of package-based systems is very similar to testing custom-developed
software systems with one exception. With custom-built software, testers often evaluate

SEL Package-Based System Development Process30 02/01/96

intermediate results from within the software components; test items are assigned to
intermediate steps within the function. Package-based systems assume internal package
correctness and often have no source code available. Thus, system qualification tests
should be designed to test packages as black boxes where only the input and output
between packages are examined. Again, package interfaces that are reused need not be
tested as vigorously as those that are new.

Configuration Management

With many packages coming from a variety of sources, good configuration management of all
project-developed components (e.g., data files, scripts, screens, software components) and
vendor-supplied components is extremely important.

The configured libraries should be established early in the project. All project-produced
components should be placed in configured libraries organized by system architecture and
component type. The vendor-supplied files associated with each COTS package should be
stored in a separate configured library that is physically maintained by the system administrator.
If a COTS package must be supported on multiple platforms, the installation and access policy
should be synchronized from the beginning.

The system configuration should be managed by a person, usually the project leader, who has a
clear understanding of the whole system architecture and the specific system increment
(build)/application being implemented. The configuration manager determines when new
components are added to the configured library and approves changes to the configured
components. On large projects, this person should be assisted by a project librarian who is
responsible for physically creating and changing the configured libraries and rebuilding
executable applications.

A key component of configuration management is a regimen of regular system backups.
Developer workstation libraries as well as configured libraries should be backed up often. The
frequency of back-up should be determined by the degree of activity. For example, daily
backups of the developer workstations may be needed during the height of development. The
configured libraries should be backed up at least weekly.

Reviews

Operational Readiness Review

TheORR focuses on reviewing the readiness of the system for operational use. Functional
completeness and system reliability and performance should be reviewed. It should follow the
same format and content as an ORR for a custom-built system.

SEL Package-Based System Development Process31 02/01/96

Products

System Description

The system description documents the system architecture and provides key maintenance
information about the system components. Specifically the document should contain:

• Diagram of the hardware components and interfaces

• Diagram of the software system

• Diagram of the system’s software components and their interfaces for both COTS
and custom-built components

• List of all inputs, outputs, and intermediate products

• For each COTS package, include a list of functions used and a detailed description
of the licensing agreement. Detail when the licenses need to be renewed and when
package updates are expected and how they should be handled. Clearly describe
any special arrangements for technical support, such as help desk, training, or
technical consultation, and maintenance agreements.

User’s Guide

The user’s guide provides all information necessary to execute the system. Specifically, it
should contain at a minimum:

• Description of the systems’s purpose

• High-level discussion of the system architecture from the user’s point-of-view; e.g.
multiple packages may result in an inconsistent look and feel to the system that
would be discussed here.

• Description of user interface rules.

• Detailed description of each use-case. Include anticipated frequency and schedule
of use. Provide detailed descriptions of all input parameters and samples of output.

• Pointers to documents where information about the COTS packages is provided,
such as the system description and COTS product user’s guides.

SEL Package-Based System Development Process33 02/01/96

Section 6—Technology Update and System Maintenance Phase

The detailed process for this, the phase that maintains the system after system delivery, has not
been developed to date. There is very little experience data to draw from at this time.

SEL Package-Based System Development Process35 02/01/96

Glossary

Baseline solution—The preferred system architecture selected packages agreed on by
management, users, and implementers as the blueprint for development.

Black-box testing—Testing without knowledge of the internals of the system; no intermediate
or debug output is available

COTS—Commercial off-the-shelf. In this concept, COTS refers to commercial software
packages, available for public purchase, to be used without modification. If the vendor must
modify the package to satisfy some requirement, this modification must be in the next release.

Component—A software element that forms part of an overall solution. Components can
usually be grouped into categories in which all the products follow a general pattern of
functionality (e.g., database management components), though their details may have
considerable differences.

GOTS—Government off-the-shelf, that is, software packages previously developed for the
government for other projects. GOTS materials must have a point of contact for package
maintenance.

Integration testing—Testing to ensure that the packages work together. All interfaces and
basic functionality are verified to ensure that system testing can proceed.

Open system—A system comprising hardware, software, and communications components
that conform to standards and conventions so that application software developed on other
platforms can be ported easily to the target platform (normally by recompiling).

Product qualification testing—Testing performed when a product is acquired to verify that it
performs as expected.

Prototyping—The process of using candidate packages to analyze system risks and proof-of-
concept.

Requirements analysis—The process of understanding the system requirements in the context
of the set of software packages available within the problem domain.

Risk analysis—The process of identifying and quantifying system implementation risks.

System implementation—The process of integrating the selected COTS packages to produce
the system solution. This process implements the functionality identified in the use-cases to
produce the solution.

System testing—Testing to ensure that system requirements are met.

Technology update—The process of modifying the delivered system to meet new
requirements, use new products, and/or incorporate technology breakthroughs to maintain
system cost-effectiveness.

Use-case—An operational scenario, from the identification of a system stimulus through to the
required system response. The system stimulus is information received from or triggered by a
system external, for example, the completion of a GUI sequence, the actual keying in of user

SEL Package-Based System Development Process36 02/01/96

data through the GUI, or the receipt of a message from an external. The identification of use-
cases requires a clear knowledge of the system boundaries; for example, does the system
include the GUI input sequence or only the result of the input?

Vendor—A commercial company selling a software package; varying levels of support is
provided as part of the purchase price or for a fee.

SEL Package-Based System Development Process37 02/01/96

References

Boehm, B., COCOMO 2.0 Model User’s Manual, Version 1.1, University of Southern
California, May 1995

Boland, D., A Proposed Guide for Package Integration by FDD Project Teams, white
paper, Computer Sciences Corporation, December 1995

Boland, D., and Messent, D., SEAS Package-Based Development Guidebook,
Volume 1, CSC Systems Process Handbook , Computer Sciences Corporation, April
1995

Computer Sciences Corporation, Package-Based Development Methodology, Volume 5,
CSC Catalyst Methodology, March 1994

Kontio, J., A COTS Selection Method and Experiences of Its Use, Proceedings of the
Twentieth Annual Software Engineering Workshop, Software Engineering Laboratory,
SEL-95-004, to be published April 1996

NASA/GSFC, Code 500 IMACCS Team, Integrated Monitoring, Analysis, and
Control COTS System (IMACCS) Engineering Report, Greenbelt, Maryland, January
1996

Stone, L. K., and Leifker, D. B., The Impact of COTS on Maintenance Organizations,
Mitre Corporation

Waund, C. K., COTS Integration and Support Model, Loral Federal Systems

