
1

The Improvement Cycle: Analyzing Our Experience

Rose Pajerski Sharon Waligora
NASA, Goddard Space Flight Center Computer Sciences Corporation

Flight Dynamics Division 4061 Powder Mill Rd.
Greenbelt, MD 20771 Calverton, MD 20705

(301) 286-3010 (301) 572-3751
rose.pajesrki@gsfc.nasa.gov swaligor@csc.com

Abstract
NASA’s Software Engineering Laboratory (SEL), one of the earliest pioneers in the areas
of software process improvement and measurement, has had a significant impact on the
software business at NASA Goddard. At the heart of the SEL’s improvement program is
a belief that software products can be improved by optimizing the software engineering
process used to develop them and a long-term improvement strategy that facilitates small
incremental improvements that accumulate into significant gains. As a result of its
efforts, the SEL has incrementally reduced development costs by 60%, decreased error
rates by 85%, and reduced cycle time by 25%.  In this paper, we analyze the SEL’s
experiences on three major improvement initiatives to better understand the cyclic nature
of the improvement process and to understand why some improvements take much
longer than others.

Background
Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and
improving the way in which one NASA organization, the Flight Dynamics Division (FDD) at
Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems.
It has done this by developing and refining a continual process improvement approach that allows an
organization such as the FDD to fine tune its process for its particular domain.  Experimental
software engineering and measurement play a significant role in this approach.

The Software Engineering Laboratory (SEL) is a partnership of NASA Goddard’s Flight Dynamics
Division (FDD), its major software contractor, Computer Sciences Corporation (CSC), and the
University of Maryland’s (UM) Department of Computer Science.  The FDD primarily builds
software systems that provide ground-based flight dynamics support for scientific satellites. They fall
into two sets: ground systems and simulators. Ground systems are midsize systems that average
around 250 thousand source lines of code (KSLOC). Ground system development projects typically
last approximately 2 years. Most of the systems have been built in FORTRAN on mainframes, but
recent projects contain subsystems written in C and C++ on workstations. The simulators are smaller
systems averaging around 60 KSLOC that provide the test data for the ground systems. Simulator
development lasts between 1 and 1.5 years. Most of the simulators have been built in Ada on a VAX
computer. The project characteristics of these systems are shown in Table 1. The SEL is responsible



2

for the management and continual improvement of the software engineering processes used on these
FDD projects.

Table 1. Characteristics of SEL Projects

The SEL process improvement approach shown in Figure 1 is based on the Quality Improvement
Paradigm [Reference 1] in which process changes and new technologies are 1) selected based on a
solid understanding of organization characteristics, needs, and business goals, 2) piloted and
assessed using the scientific method to identify those that add value, and 3) packaged for broader use
throughout the organization. Using this approach, the SEL has successfully established and matured
its process improvement program throughout the organization.

UNDERSTANDING

ASSESSING

PACKAGING
Make improvements part of your business 
 
 • Update standards 
 • Refine training 

TIME

ITERATE

Determine effective improvements 
 
 • Determine improvements and set goals 
 • Measure changed process and product 
 • Analyze impact of process change on product

Know your software business 
 
 • What are my software characteristics? 
 • What process do we use? 
 • What are our goals?

Figure 1.  SEL Process Improvement Paradigm

The SEL organization consists of three functional areas: software developers, software engineering
process analysts, and data base support (Figure 2). The largest part of the SEL is the 150-200
software personnel who are responsible for the development and maintenance of over 4 million

Characteristics
Applications

Ground Systems Simulators

System Size

Project Duration

Language

Hardware

Staffing (technical)

150 - 400 KSLOC 40 - 80 KSLOC

1.5 - 2.5 years 1 -1.5 years

10 - 35 staff-years 1 - 7 staff-years

Ada, FORTRANFORTRAN, C, C++

IBM Mainframes, 
Workstations

VAX



3

source lines of code (SLOC) that provide orbit and attitude ground support for all GSFC missions.
Since the SEL was founded, software project personnel have provided software measurement data on
over 130 projects. This data has been collected by the database support personnel and stored in the
SEL data base for use by both the software project personnel and the process analysts. The process
analysts are responsible for defining the experiments and studies, analyzing the data and producing
reports. These reports affect such things as project standards, development procedures, and how
projects are managed.  The data base support staff is responsible for entering measurement data into
the SEL data base, quality assuring the data, and maintaining the data base and its reports.

Figure 2.  SEL Organizational Structure

Improvement Cycles

Although the improvement process is a never ending endeavor, it is cyclic in nature. At the SEL,
improvement cycles operate within the context of the SEL process improvement paradigm. Each
improvement cycle tends to focus on a single organizational goal and only one or two process or
technology changes that address that goal. Often these build on earlier experimental results. Each
SEL improvement cycle has four major steps:

1. Each improvement cycle begins with setting improvement goals based on the current business
needs and strategic direction of the organization. Based on a solid understanding of the problem
domain (application), the development environment, and the current process and product
characteristics of the organization, process analysts identify leverage areas, i.e., software process
or product characteristics that could have a significant impact on the overall performance of the
organization. For example, increasing software reuse would have a high probability of reducing
project cost and development cycle time. Therefore, if the business goals are to reduce cost
and/or cycle time, increasing reuse would be a reasonable leverage area.

2. The next step is to identify software engineering technologies (processes, methods and/or tools)
that are likely to affect the leverage area. For example, object-oriented techniques (OOT) are
reported to facilitate reuse. The ultimate goal of this step is to select one technology or process
change that has the greatest potential for meeting the improvement goal.

DEVELOPERS PROCESS ANALYSTS

DATA BASE SUPPORT

Staff level: 150 - 200
Function:  Develop  
                  software

NASA & CSC

Staff level: 10 -15
Function:  Design studies

     Perform analysis
     Refine process    

NASA & CSC & UM 

Staff level: 2 - 3
Function: Process, QA,
                  & archive data 

SEL
 Data Base

Reports
Library

130 Projects

•SEL Reports
•Project DocsNASA & CSC

Measures

Refined
Process



4

3. The third and longest step of the improvement cycle is to conduct experiments to understand the
value and applicability of the new technology in the local organization.  Scientific methods are
used to pilot the technology on one or more real projects and observe the use and effect of the
technology on the development process, products, and project performance.  Process analysts use
both qualitative feedback and quantitative measurements to evaluate the value of the
technology/process change. Key project measurements are compared with those from a control
group (similar contemporary projects using the standard process) to assess overall value. Several
experiments that successively refine the process/technology may be required before it is ready to
deploy.

4. The final step in an improvement cycle is to deploy the beneficial process/technology throughout
the organization. This involves integrating the process change/technology into the standard
process guidebooks, providing training to project personnel, and providing ongoing process
consulting support to facilitate the adoption of the new technology/process change.

Since its inception, the SEL has completed numerous improvement cycles spanning from one to
seven years. The amount of time it takes to complete a cycle depends on the maturity and breadth of
the technology/process change. Several improvement cycles are usually active at one time; however,
they involve different subsets of the organization’s projects.

SEL Improvement Examples

In 1985, the SEL set two fairly common improvement goals: 1) reduce the cost of developing
software systems, and 2) improve the quality of delivered systems. In 1990, in response to NASA’s
new emphasis on launching missions more quickly, a third goal was adopted: 3) reduce the cycle
time needed to develop new systems. All of these goals were addressed by leveraging different
process and technology areas within the context of a unified improvement program.

The following examples illustrate the different approaches taken and results achieved within three
representative SEL improvement initiatives.  As shown in Table 2, each initiative used a different
number of improvement cycles and a somewhat different deployment strategy to achieve the desired
results.  The number of improvement cycles were driven by the experiment approach and results,
while the deployment strategy was selected based on a risk/benefit analysis of the process change
using the experiment results.

 Table 2. SEL Improvement Examples

Goal Improvement
Initiative

Cycles Experimentation
Approach

Deployment
Approach

Reduce
Cost

Maximize
Reuse

2 Iterative learning of how to
apply OO concepts; develop
new reuse methods

Full use in highest
payback applications
(subset of projects)

Increase
Quality

Leverage
Human

Discipline

3 Iterative refinement of existing,
external testing techniques
and Cleanroom Methodology

Subset of  ‘best’
techniques across all
projects

Reduce
Cycle

Time/Cost

Streamline
Testing
Process

1 Refine and consolidate local
(familiar) processes

Full use across all
projects



5

Example 1: Maximizing Reuse

To reduce costs, the SEL chose to introduce and experiment with two software engineering
technologies, the Ada language and object-oriented design (OOD), that had high potential for
maximizing software reuse. Experimentation began across a single class of applications, flight
dynamics simulators, as the first improvement cycle focused on defining a generalized architecture
based on more theoretical OO concepts. Once the developers were able to apply the architecture to
their systems, the application scope expanded to include generalizing more elements of flight
dynamics systems. The second group of experiments expanded the definition of ‘generalized’ to
include reusable specifications which has resulted in a large library of reusable flight dynamics
components. Figure 3 shows the experimental focus areas and timeline for these two improvement
cycles. Because the early work with OO was more conceptual, several phases of experimentation
across different development projects were undertaken prior to deploying the supporting process
changes.

Figure 3.  SEL Reuse Improvement  Cycle Timeline

Within 4 years, this effort culminated in the first deployment of reusable generalized architectures
that have led to a 300% increase in software reuse per system and an overall cost reduction of 55%
during the next 4 years [Reference 2]. Further development of these object-oriented concepts has
produced a set of reusable specifications and a corresponding component library that promises even
greater improvements in 1997 systems. Figure 4 depicts the measured impact to the FDD resulting
from these changes.

19901985 1995

OO Concepts

Generalized 
Architectures

Development 
Concepts

Reusable 
Specifications

Reuse of 
Architectures

Reuse Library 
Components

Generalized
Library

Experimentation Deployment



6

Figure 4. Results of Introducing OOD and Ada

Example 2: Leveraging Human Discipline

Early experimental results showed the positive impact that leveraging the experience and perspective
of the individual developer brought to software development. Based on these results, the SEL chose
to focus on software engineering methodologies that support human discipline to meet our quality
goal [Reference 3]. The first improvement cycle which investigated different testing techniques such
as code reading, and unit and functional testing confirmed that those methods which relied on human
discipline were the most effective. This led to a significant effort within the SEL to maximize the
potential of human discipline by experimenting with the Cleanroom Methodology.

The SEL has completed two improvement cycles over four projects (two large, 2 small) that
specifically addressed Cleanroom;  the initial SEL Cleanroom project began in 1988, with the fourth
and final effort completed this year. The focus of the Cleanroom Methodology is on producing
software with high probability of zero defects. The key elements of the methodology include an
emphasis on human discipline in the development process via code inspections and requirements
classification, and a statistical testing approach based on anticipated operational usage. Development
and testing teams operate independently, and all development team activities are performed without
on-line testing. Analysis of the first three Cleanroom efforts had indicated greater success in applying
the methodology to smaller (< 50K developed lines of code (DLOC)) in-house GSFC projects than to
larger-scale efforts typically staffed by joint contractor-government teams. The final Cleanroom
project involved development of a large scale system (480K SLOC, 140K DLOC), with the primary
study goal to examine it as an additional data point in the SEL’s analysis of Cleanroom applicability
in the organization, especially in the area of scalability.

The goal of the SEL’s Cleanroom study was not to make a decision on adopting Cleanroom in its
entirety within the organization, but rather to highlight those aspects of the methodology which had
favorable impacts and to incorporate them into the standard approach.  This approach of incremental
deployment, shown in Figure 5, proved very successful in instilling these changes throughout the
organization. Experimentation with Cleanroom raised the general awareness of the organization

55% Cost Reduction

Percent Reuse

300% Increase in Reuse

1985 - 1989 1990 - 1992
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

er
ce

n
t 

re
u

se

Max = 35%

Min = 11%

Avg = 18% Min = 18%

Avg = 73%

Max = 97%

Total Cost per Mission

0

100

200

300

400

500

600

700

800

900

S
ta

ff
m

o
n

th
s

Max = 871

Min = 413

Avg = 564

 Max = 320

Min = 150

 Avg = 254

1985 - 1989 1990 - 1992



7

regarding quality techniques and discipline-enhancing processes.  This emphasis is one of the key
reasons for the FDD’s steady improvement in reducing development error rates by 85% over a 15
year period as shown in Figure 6.

Figure 5.  SEL Quality Improvement Cycle Timeline

Figure 6. Quality Improvement in the SEL

Example 3: Streamlining the Testing Process

In 1992, the SEL saw the cost of system development was decreasing significantly due to increasing
code reuse; however, no corresponding decrease in development cycle time was occurring. In
addition, although the cost associated with design and code effort had been reduced, testing costs
remained virtually the same. This led to an assessment of the testing processes in use, and resulted in
a decision to focus testing in one group. This group, called the independent testers, effectively
collapsed two separate testing phases (system and acceptance) conducted by two different groups
(developers and users), into one phase (independent) performed by one group composed of

Experimentation Deployment

Unit Test
Methods

Cleanroom
Small Projects

Cleanroom
Large Projects

Code Inspection &
Reqs. Classification

19901984 1996

Usage
Testing

Code Reading &
Functional UT

0

2

4

6

8

10

12

14

16

Development  Error Rates (1976 -1995)

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET GROSIM

MAGSAT

DERBY

ERBS

DEB
FOXPRO

SMM

PAS
ISEEC

GSOC
DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS
GOFOR

COBEAGSS
ASP ADEAS

GROAGSSCOBSIM FDASF

BBXRT
GOADA
UARSTELS UARSAGSS

TONSIBM
POWITS

GOESIM

SAMPEXTS
EUVEAGSS   

EUVETELS

EUVEDSIM
SAMPEX

FASTELS

AEM

GROHUD

  

SOHOAGSS

TOMSTELS TOMSAGSS
FASTAGSS

SOHOTELS

XTEAGSS
SWASAGSS

SWASXTLS

E
rr

o
rs

 p
er

 K
D

L
O

C

19961976 1978 1980 1982 1984 1986 1988 1990 1992 1994
Project Midpoint

Ada Projects
FORTRAN Projects



8

experienced flight dynamics analysts and testers. This change, in both process and organization, was
introduced in order to reduce the cycle time required to deliver a system, to improve the efficiency of
the testing process, and to do so without sacrificing the quality of any product delivered.

Since this change was limited to one organization which was already heavily involved in defining the
new testing process, the experimentation portion was brief and the risk of full deployment was
judged to be low (Figure 7).  Once the organizational changes were made, process changes were
implemented quickly, simultaneously across all current test efforts. The resultant measurements
(Figure 8) indicate that independent testing has yielded a definite shift in life-cycle effort distribution,
with the testing effort being reduced from 41% to 31% of the total project effort [Reference 5].
Reductions in cycle time on the order of 5% to 20% have been verified with no loss of quality.

Figure 7.  SEL Independent Testing Improvement Cycle Timeline

Figure 8. Results of Streamlining the System Testing Process

Measuring Overall Improvement

Each of the above initiatives resulted in measurable improvement, however each was measured in
isolation on a particular set of projects. On a long-term, continual improvement program, it is
important to periodically assess how the organization is doing as a whole. To make this assessment

Form independent
testing group
& define new 
test process

New Independent 
Test Team Approach

Experimentation Deployment

19941992 1996

Total Mission Cost

1990 - 1992 1993 - 1995

Development Schedule

10% Cost Reduction 5% - 20% Improvement

0

50

100

150

200

250

300

350

S
ta

ff
m

o
n

th
s

Max = 320

Min = 150

Avg = 254
Max = 288

Min = 158

Avg = 225

0

50

100

150

W
ee

ks

Avg = 106

Min = 86
Avg = 102

Min = 69

Max = 129 Max = 137

1990 - 1992 1993 - 1995



9

and to update the organizational characteristics that will drive future improvement decisions, the SEL
periodically computes an organizational baseline. This consists of key measurements that characterize
the performance of the project organization over a specified time period and represent the
organization’s ability to perform similar work in the future.

We use a fairly small set of baseline measurements to evaluate improvement. They include total cost,
total duration, development error rate, reuse percentage, cost per new line of code, and cost per
delivered line of code. For each baseline measurement, a maximum, a minimum, and a project mean
are computed for a particular time period, referred to as the baseline period. Overall improvement in
each measurement is determined by comparing the means of two baseline periods, i.e., (current mean
- previous mean) / previous mean.

Since 1985, the SEL has computed three baselines to overall improvement. Figure 9 shows when
these baselines were computed in relation to the three examples discussed earlier. Notice that
baselines were computed a few years after a set of improvements were deployed allowing time for
projects to use the improved process. Figures 10 and 11 show how the results of the individual
initiatives combined to make significant overall improvements.

Figure 9.  Improvement Cycle Timelines

The SEL’s recently completed 1996 organizational baseline shows across-the-board improvement in
all measurements.

• Average mission cost decreased by 15% when compared with the 1993 baseline, totaling a 60%
overall reduction in mission cost since 1985. (Figure 10)

• The cost to develop a line of new code decreased nearly 35% since 1993.  (There had been no
previous improvement in this measure.)

• Ground system projects saw a modest 7% reduction in project cycle time, while simulators
experienced a 20% reduction since 1993. (Figure 8)

• Error rates continued to drop, with a 40% reduction in development error rates since 1993.  This
combines with earlier improvements to total an 85% drop in development error rates over the past
10 years. (Figure 6)

1984 19961990

Reuse &
Ada/OO

Unit Testing
& Cleanroom

Independent
Test Teams

Baseline
measurement



10

• After the initial 300% increase in reuse seen in the 1993 baseline, software reuse remained high
with an average of 80% on all projects; however, the minimum amount of reuse has now risen
from 18% in the 1993 baseline project set to 62% in the recent project set, demonstrating a much
more consistent use of reusable products in the SEL. (Figure 11)

Figure 10.  Overall Cost Reduction in SEL

Figure 11. Overall Improvement in Reuse

60% Overall Cost Reduction

0

200

400

600

800

1000

1985-1989 1990-1992 1993-1995

S
ta

ff
m

o
n

th
s 

p
er

 m
is

si
o

n

Max = 871

Min = 413

Avg = 564

Max = 320

Min = 150

Avg = 254
Max =288

Min = 158
 Avg = 225

340% Total Increase in Reuse

1985 - 1989 1990 - 1992 1993 - 1995

P
er

ce
n

t 
o

f 
re

u
se

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Min = 11%
Avg = 18%

Max = 97%

Min = 18%

Avg = 73%

Max = 97%

Min = 62%

Avg = 79%

Max = 35%



11

Observations and Conclusions

The SEL’s success with incremental process change, as opposed to leading edge technology
adoption, has led us to select the experimental approach to changing process gradually.
Experimentation has allowed the beneficial changes to be deployed incrementally with low risk to
ongoing projects.  Deployment has been quicker for those process changes that were confined to a
single phase or development activity, as with the test team process change. Following are several
observations and recommendations based on our analysis of the improvement cycles discussed in this
paper.

• Focus on a single goal for each process/technology change to provide a clear definition of the
expected change and non-ambiguous measurement of its effect. There is a temptation to overload a
single project with multiple changes, often in the hope that at least one will work. SEL experience
suggests that this approach will not result in sustained improvement; it will only confuse the team and
obscure the impact of the individual technologies.

• Select process changes that leverage peoples’ talents. Processes that enhance human discipline and
intellectual abilities provide significant improvement. Tools should be used to replace or facilitate
routine tasks such as configuration and change management.

• Allocate sufficient experimental time for tailoring and iterative application/learning of new
concepts. The SEL’s experience in first developing OOD concepts followed by a generalized
architecture,  prior to deployment, shows the benefit of taking a little more time to develop a more
usable product (the architecture) rather than deploying the more abstract concepts first.

• Set improvement time expectations appropriately. The more familiar the organization is with the
process being changed, the faster it can be tuned and deployed and its impact realized. Existing
processes can be refined and adapted more rapidly than abstract concepts; however, the adaption of
an external (unfamiliar) process, such as Cleanroom, will take longer than refining an existing local
process, such as streamlining the SEL testing process.

• Deploy a subset of the changes as soon as the benefit is shown. Often it is clear that certain
subprocesses or techniques are very beneficial even though the entire  new process/technology may
not yet be proven.  Early deployment allows the organization to reap its benefits as early as possible
and it also begins to pave the way for the rest of the method that may follow.

References

[1] Basili, V., “Quantitative Evaluation of a Software Engineering Methodology,” Proceedings of the

First Pan Pacific Computer Conference, Melborne, Australia, September 1985.
[2] Waligora, S., M. Stark, and J. Bailey, “The Impact of Ada and Object-Oriented Design in NASA
Goddard’s Flight Dynamics Division,” Proceedings of the 13th Annual Washington Ada Symposium
(WAdaS96), July 1996.
[3] Basili, V. and R. Selby, Jr., “Comparing the Effectiveness of Software Testing Strategies,” IEEE
Transactions of Software Engineering, Vol. SE-13, No. 12, December 1987.
[4] Basili, V. and S. Green, “Software Process Evolution at the SEL,” IEEE Software, July 1994, pp.
58-66.
[5] Waligora, S. and R. Coon, “Improving the Software Testing Process in NASA’s Software
Engineering Laboratory,”  Proceedings of the Twentieth Annual Software Engineering Workshop,
Goddard Space Flight Center, December 1995.



12


