NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT
1992-1997

KEY WORDS

Analysis Bins

Common problems

Core samples

Defect types

Experiment participants
Software Inspection Lab
Software process maturity level
Standard of excellence

Return on investment

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and
it is slipping behind other countries. The National Software Quality Experiment is riveting
attention on software product quality and revealing the patterns of neglect in the nation's software
infrastructure.

ABSTRACT

In 1992 the DOD Software Technology Strategy set the objective to reduce software problem rates
by a factor of ten by the year 2000. The National Software Quality Experiment is being
conducted! to benchmark the state of software product quality and to measure progress towards
the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of software
product quality. A micro-level national database of product quality is being populated by a
continuous stream of samples from industry, government, and military services. This national
database provides the means to benchmark and measure progress towards the national software
quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures,
product checklists, and participant behaviors are packaged for operational project use. The
uniform application of the experiment and the collection of consistent measurements are guaranteed
through rigorous training of each participant. Thousands of participants from dozens of
organizations are populating the experiment database with thousands of defects of all types along
with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements
taken in the lab and the derived metrics are organized along several dimensions including year,
software process maturity level, organization type, product type, programming language, and
industry type. These dimensions provide a framework for populating an interesting set of analysis
bins with appropriate core samples of software product quality.

1 The National Software Quality Experiment is an entrepreneurial activity.

@Copyright Don O'Neill, 1998 2 Software Engineering Workshop

EXPERIMENT MOTIVATION AND ORGANIZATION

Overview

Participants are attracted to the experiment as a place where they can calibrate their software quality
against appropriately selected industry core samples. Here they can jump-start the organization's
quality measurement program on the shoulders of uniform Software Inspection Lab procedures.
These procedures are operationally packaged for project use and include well defined processes,
industrial strength product checklists, participant roles and behaviors, and standard forms and
reports.

The National Software Quality Experiment provides the framework to pose important quality
questions. Its micro-level national quality database provides the measurements to answer them.
Similarly, the extent of certain common risks can be quantified. As a participant in the experiment,
an organization can characterize the effectiveness of its software quality process. At the industry
level, progress towards the national software quality objective can be can be benchmarked.

Participants in the experiment benefit in several ways. They are able to characterize the maturity of
their software quality process. With this understanding, they are able to establish goals for
improving the process and to set priorities for immediate action. Beyond that, these organizations
are able to promote a vision for excellence in their software products and to calibrate their progress
towards the national software quality goal.

Motivation
The Department of Defense Software Technology Strategy was drafted for the Director of Defense
Research and Engineering in December 1991 [DOD STS 91]. Three important national objectives
were established to be achieved by the year 2000:

1. Reduce equivalent software life-cycle costs by a factor of two

2. Reduce software problem rates by a factor of ten

3. Achieve new levels of mission capability and interoperability via software

Every software organization should treat the national objective to improve software product quality
by a factor of ten as a wake-up call. Are organizations planning to reduce software problem rates
by a factor of ten? Do they know what these rates are now?

Measurement Best Practice
Although measurement is needed to derive effective policy governing acquisition, development,
and operations, there is not yet an industry consensus on the wisdom of creating a national
database for software engineering. The issue centers on the use of the data, not on its collection.
The worry is that the industry is not ready to use the database appropriately. Clearly the industry
can learn to use the database appropriately once it exists. If there are national goals set for
software engineering, there must also be a national measurement program and database to track
progress and refine goals. Camegie Mellon University's Software Engineering Institute produced
"A Concept Study for a National Software Engineering Database" in July 1992 [Van Verth 92].
The study points out that there are many users for such a database, but few suppliers. The study
offers the following observations and advice on establishing a national database:

1. Wide variance may exist in the collection process

2. Common data definitions are needed

3. Goals and questions should precede data collection

4. Confidentiality of the data must be protected

@Copyright Don O'Neill, 1998 3 Software Engineering Workshop

In designing the experiment, it is recognized that the prescription for achieving lasting value in
measurement depends on the successful integration of measurement concepts, operationally
defined and packaged processes, effective technology transition including the training of
participants and the dissemination of results, and hands-on oversight of the experiment. The
prescription for lasting value in measurement revolves around four driving measurement concepts.
First, measurement must be aligned with business needs. Second, metrics must be carefully
pinpointed and rigorously defined. Third, measurement activities must be built into the normal
operation of the organization. Finally, extraordinary steps must be applied to obtain consistency
and uniformity in data collection.

Finally, Dr. Vic Basili of the University Maryland provides the following additional guidelines
[Wallace 97]:

1. Establish the goals of the data collection

2. Develop a list of questions of interest

3. Establish data categories

4. Design and test the data collection form

5. Analyze data

Nature and Role of Experiment
In the practice of software engineering, managers are guided more by myth than by measurement.
The experiment provides the framework for measuring critical aspects of software product quality
practice. The framework supplies the ingredients needed to install a uniform and consistent
measurement methodology. These are described in the Software Inspections Mechanism. The
predictability of the measurements taken in conducting the experiment provides the basis for
assessing the validity of a hypothesis. This is discussed in Experiment Results. Some of the
questions asked and answered in the experiment are:

1. To what extent is there a continuing stream of requirements changes?

2. What are the leading types of errors?

3. Are errors traced to people or process?

4. Is a standard development process followed?

5. To what extent are wrong software functions being developed?

6. To what extent are there shortfalls in real time performance?

7. Is gold plating a problem?

Software inspections are an essential ingredient in fact-based software management. They utilize a
reasoning process for conducting a fine-grained, deep-probing evaluation. When combined with
automation-based quick-look evaluations, the best balance between efficiency and insight can be
obtained. Once installed in the organization, the software inspection process yields core samples
of software product quality. These can be used to benchmark problem rates by defect type among
major product areas within the organization. With the benchmark measurements in place, the
software inspections process provides a stable, uniform, and persistent mechanism for measuring
improvement progress toward the software product goals of the organization.

SOFTWARE INSPECTIONS MECHANISM

Setting the Standard of Excellence

Software products reveal the standard of excellence in software engineering applied in their
production. In improving software product quality, an industrial strength standard of excellence
must be set, and the software operations within the organization must be disciplined to meet that
standard. This is done by measuring actual practice using the strongly preferred indicators from the
national standard of excellence spanning completeness, correctness, style, rules of construction,
and multiple views.

@ Copyright Don O'Neill, 1998 4 Software Engineering Workshop

Completeness

Completeness is based on traceability among the requirements, specification, design, code, and
test artifacts. Completeness analysis reveals what predecessor artifact sections have not been
satisfied as well as the inclusion of extra fragments.

Correctness

Correctness is based on reasoning about programs through the use of informal verification and
correctness questions derived from the prime constructs of structured programming and their
composite use in proper programs. Input domain and output range are analyzed for all legal values
and all possible values. Adherence to project specific disciplined data structures is analyzed.

Style

Style is based on project specified style guidance based on block structured templates. Semantics
of the design and code are analyzed for correspondence to the semantics used in the requirements,
specifications, and design. Naming conventions are checked for consistency of use; and
commentary, alignment, upper/lower case, and highlighting use are checked.

Rules of Construction

Rules of construction are based on the software architecture and its specific protocols, templates,
and conventions used to carry it out. For example, these include interprocess communication
protocols, tasking and concurrent operations, program unit construction, and data representation.

Multiple views

Multiple views are based on the various perspectives required to be reflected in the product.
During execution many factors must operate as intended including initialization, timing of
processes, memory use, input and output, and finite word effects. In generating the software,
packaging considerations must be coordinated including program unit construction, program
generation process, and target operations. Product construction disciplines of systematic design
and structured programming must be followed as well as interfaces with the user, operating
system, and physical hardware.

EXPERIMENT RESULTS

Experiment Participants

The participants of the National Software Quality Experiment have been trained in the Software
Inspections Course and Lab. Experiment results are drawn from these Inspection Lab sessions.
The participating organizations span government, DOD industry, and commercial sectors and
represent a wide range of application domains.

» Electronic warfare
e FAA communications

e Accounting, personnel, administration
* Administrative and management

decision support

e Aircraft jet engine diagnostics,
logistics, and maintenance

* Artillery fire control system

* Avionics flight on-board control

¢ Control devices for avionics
applications

¢ Credit card application

* Department of State embassy support

¢ Electronic commerce

@Copyright Don O'Neill, 1998

* Factory line support

e Financial services

* Global positioning system user sets
¢ Insurance and medical information
¢ International banking

* Joint Chiefs of Staff support

¢ Medical information system

* Naval surface weapons system

* Pre and post flight space application
* Telecommunications

Software Engineering Workshop

Results Summary

Ralph Waldo Emerson said, "The years teach us things the days never knew". The National
Software Quality Experiment has been accumulating a steady stream of core samples for its
micro-level national database. These results provide a benchmark of software product quality
measurements useful in assessing progress towards the national software quality objective for the
year 2000. These results are highlighted below in the discussion of the common problems
pinpointed, defect category and severity data summary, Inspection Lab operations, the
predictability of certain measurements, and the ranking of defect types.

Common Problems
Analysis of the issues raised in the experiment to date has revealed common problems that reoccur
from session to session. Typical organizations which desire to reduce their software problem rates
should focus on preventing the following types of defects:
1. Software product source code components are not traced to requirements.
* As a result, the software product is not under intellectual control, verification procedures
are imprecise, and changes cannot be managed.
2. Software engineering practices for systematic design and structured programming are applied
without sufficient rigor and discipline.
* As a result, high defect rates are experienced in logic, data, interfaces, and functionality.
3. Software product designs and source code are recorded in an ad hoc style.
* As a result, the understandability, adaptability, and maintainability of the software
product are directly impacted.
4. The rules of construction for the application domain are not clearly stated, understood, and
applied.
* As a result, common patterns and templates are not exploited in preparation for later
reuse.

Defect Category and Severity
The defect severity metric revealed that 14.27% of all defects were major, and 85.73% minor.
Defect category distinguishes missing, wrong, and extra. For major defects, 7.44% were missing,
5.95% wrong, and .88% extra. -
For minor defects, 49.76% were Defect Severity and Category Summary

missing, 27.63% wrong, and
8.32% extra. Missing Wrong Extra Total

Inspection Lab Operations Major 744 595 88 14.27

Through 1997 there have been 112
Inspection Labs in which 2317
participants were trained and Total 57.20 33.60 9.20 100.00
conducted inspection sessions. A
total of 788,459 source lines of code have received strict and close examination using the
packaged procedures of the lab. There have been 142,306 minutes of preparation effort and 52,196
minutes of conduct time expended to detect 11,375 defects.

Minor 49.76 27.63 8.32 85.73

Of these 11,375 defects, 1854 were classified as major, and 9521 as minor. A major defect effects
execution; a minor defect does not. It required 12.51 minutes of preparation effort on the average
to detect a defect. To detect a major defect required 76.76 minutes of preparation effort on the
average. On the average, .906 thousand source lines of code were examined each inspection
conduct hour. There were 2.35 major defects detected in each thousand lines, and 12.08 minor
defects. There were 4.91 defects detected per session with a return on investment of 4.48.

@Copyright Don O'Neill, 1998 6 Software Engineering Workshop

Sessions

2317

Metrics:
1.

Noohkwh

INSPECTION LAB OPERATIONS

Prep Conduct Major Minor
Effort Time Defects Defects
142,306 52,196 1854 9521
12.51 minutes of preparation effort per defect
76.76 minutes of preparation effort per major defect
2.35 major defects per KSLOC

12.08 minor defects per KSLOC

906 lines per conduct hour

4.91 Defects per session

448 Return on Investment

Size in
Lines

788,459

Questions Answered in the Lab

The micro-level national database on software product quality can be used to answer important
software engineering questions. When appropriately selected core samples are accumulated in the
Report Summary Form and the probability of occurrence is computed for each defect type, defect
severity, and defect category, these probabilities can be used to construct answers to questions.
Five of Boehm's top ten risks are answered below using the 1992-1997 data from the experiment:

Defect Type Ranking
The foremost defect types that accounted for 90% of all defects detected are:

Documentation
Standards
Functionality
Logic

Data
Maintainability

Syntax

40.86% error in guidance documentation

20.39% error in compliance with product standards

7.95% error in stating or meeting intended

7.86% error revealed through informal correctness questions
function

5.36% error in data definition, initial value setting, or use

4.73% error in good practice impacting the supportability
and evolution of the software product

4.02% error in language defined syntax compliance

50.00 -

40.00 -

30.00 -

"3007070

@ Copyright Don O'Neill,

1992-1997

i
[
i
m
E3
]

]

-,

Percent of Defect Types

Interface

Data

Logic

/70

Performance
Functionality
Human Resocurces
Standards
Documentation

Syntax

Test Environment
m Test Coverage

Maintainability
Other

1998

Software Engineering Workshop

To what extent were the wrong software functions being developed?
Functionality errors accounted for 7.95% of all errors.
To what extent were the wrong user interfaces developed?
Interface errors accounted for 1.05% of all errors.
Human Factors accounted for 1.79% of all errors.
To what extent was there gold plating?
9.20% of all errors were classified as extra.
To what extent was there a continuing stream of requirements changes?
Documentation errors accounted for 40.86% of all errors.
To what extent was there a shortfall in real time performance?
Performance errors accounted for 2.39% of all errors.

Questions Not Yet Answered

It is useful to keep in mind that defects detected do not equal defects inserted. Defects may go
undetected and leak into downstream activities. Consequently there is interest in defect leakage and
ways to measure and reason about it. The Software Inspection Lab includes a mechanism to
collect data on defect leakage and to reason about the results. This reasoning process crosses over
into defect prevention.

Defect leakage was introduced into the National Software Quality Experiment in 1995, and the data
on this is starting to build up. The defect leakage data needs to populate each analysis bin in
sufficient quantity before these results are usable. With this data it will be possible to conduct
special studies on defect leakage to augment the core analyses done continuously.

Questions asked but not yet answered include:
1. To what extent is defect leakage occurring?
2. What is the frequency distribution of defect types that leak?

The mechanism used to gather defect leakage involves identifying the life cycle activity for each
software inspection and the defect origin for each defect. Each software inspection is considered an
exit criteria for a software product engineering activity. Each defect is characterized by category,
severity, type, ... and defect origin. Defect origin is the software product engineering activity
where the defect was inserted. Where defect origin does not match the software product
engineering activity for which this inspection serves as an exit criteria, defect leakage has
occurred.

Measurement Results By Analysis Bin

The findings of the National Software Quality Experiment are organized along several dimensions
which provide a framework for populating an interesting set of analysis bins with appropriate core
samples of software product quality. The analysis bins are used to organize the findings into
collections of data that reveal distinctions and may suggest interesting trends.The types of bins
selected are year, software process maturity (level 1,2,3), organization type (commercial, DOD
industry, government), product type (embedded, organic), programming language (modern, old
style), and industry type (defense, financial, manufacturing, medical, telecommunication,
transportation). As data for each year is collected, the overall results become more interesting, and
the population of analysis bins becomes more robust.

Return On Investment

Managers are interested in knowing the return on investment to be derived from software process
improvement actions. The Software Inspections Process gathers the data needed to determine this.

@Copyright Don O'Neill, 1998 8 Software Engineering Workshop

The defined measurements collected in the Software Inspections Lab may be combined in complex
ways to form this derived metric. The Return on Investment for Software Inspections is defined
as:
Savings/Cost , where:
Savings=(Major Defects * 9) + Minor Defects
Cost= (Minutes of Preparation Effort + (Minutes of Conduct Time * 4))/60

This model for Return on Investment bases the savings on the cost avoidance associated with
detecting and correcting defects T - =
earlier rather than later in the{
product evolution cycle. A Major
Defect that leaks into later phases |
may cost ten hours to detect and
correct. Ten hours to fix later minus | 14
one hour to fix now results in the
constant nine (9) applied to Major
Defects. A Minor Defect may cost
two hours to fix later minus one |
hour to fix now resulting in a!
constant of one (1) applied to Minor
Defects. To convert the Minutes of
Conduct Time to effort, the average
number of participants (4) is
applied. The constant 60 minutes is
applied to convert minutes to hours. National Sofawvare Quality Experiment

IReturn on Investment |

The graph showing the Return on
Investment for each organization participating in the National Software Quality Experiment
suggests that the Return on Investment for software inspections ranges from 4:1 to 8:1. For every
dollar spent on software inspections, the organization can expect to avoid 4-8 dollars on higher
cost rework.

CONCLUSION

Closing Observations

In closing it needs to be stated that the data does not suggest progress towards the Y ear 2000 goal
to reduce software problems by a factor of ten. Hunting for defects in software is a target rich
opportunity. The harder the project looks for errors, the more it finds. The way to look harder is
to reduce the volume of product inspected in each session.

The data suggests that increased software process maturity results in increased defect detection,
with the result perhaps being lower defect leakage into the field. At level 1 the project lacks a
shared vision for a standard of excellence for software engineering products. At level 2 attention is
paid to establishing a standard of expectation, a standard of excellence, and so more defects are
identified. At level 3 the standard is set and the well defined, fined grained processes for software
product engineering are in place and in practice with software inspections operating as the exit
criteria for each activity of the life cycle.

The data also suggests that defect density decreases with program size. As stated earlier, all
programs contain a beginning, an end, and a context for operation within the larger system.
Starting, finishing, and fitting in are all more error prone than the body of the program which gives
it size.

@Copyright Don O'Neill, 1998 9 Software Engineering Workshop

In addition the data suggests that the organization's neglect of its software process exceeds the
poor workmanship of individual programmers as the source of errors. Documentation and
standards defect types account for nearly two-thirds of all defects, and these are the responsibility
of the organization and its process.

Software products are not well connected to the requirements or business case that inspired their
creation. Much of the documentation type defect detection results from the lack of traceability from
the code to the design to the specification to the requirements.

Field Measurement Lessons
In conducting the National Software Quality Experiment, valuable lessons in field measurement are
being learned. These lessons are forming the prescription for obtaining lasting value in
measurement:
1. Measurement must be aligned with business and performance needs. These activities
must be built into the normal operation of the organization. To do this, the goals to be met
and questions to be answered in management, engineering, and operations must precede
the collection of data.
2. Metrics must be carefully pinpointed and rigorously defined. Extraordinary steps must
be applied to obtain consistency and uniformity. Without a well defined process for data
collection and analysis, the variance in the measurement process itself impacts the accuracy
of results.
3. Attention must be paid to the confidentiality of results. The opportunity for improvement
is increased when the measured results are made more widely available. However,
individuals and groups naturally resist having their shortcomings made public. If ignored,
this resistance will defeat the measurement program. The organization must strike a balance
between public and private data.

Next Steps

The National Software Quality Experiment is a demonstrated mechanism for collecting uniform and
consistent measurements of software product quality. It provides the vantage point for software
product quality and the field experience in measurement needed to jump start the practice of fact-
based software management.

As the centerpiece of the experiment, the Software Inspection Labs have been installed in
software factories around the country. The National Experiment collects, organizes, and packages
core samples of software product quality. These measurements are increasing the understanding of
the state of the practice and how to measure it.

The usefulness and success of the National Software Quality Experiment depends on sustaining a

continuous stream of core samples. Organizations from industry, government, and the military are
invited to participate and enrich this national database resource.

@Copyright Don O'Neill, 1998 10 Software Engineering Workshop

BIBLIOGRAPHY

[DOD STS 91]

[Ebenau 94]
[Fagan 76]
[Florac 92]
[Freedman 90]

[Gilb 93]
[Linger 79]
[Humphrey 89]
[O'Neill 88]
[O'Neill 89]
[O'Neill 92]
[O'Neill 94]
[O'Neill 95,96]
[O'Neill 97]
[O'Neill 97]

[O'Neill 97]

[O'Neill 98]

[Paulk 95]
[Van Verth 92]
[Wallace 97]

@Copyright Don O'Neill, 1998 11

Department of Defense Software Technology Strategy, draft prepared for
the Director of Defense Research and Engineering [DDR&E], December
1991

Ebenau, Robert G. and Susan H. Strauss, "Software Inspection Process",
McGraw-Hill, Inc., 1994

Fagan, M., "Design and Code Inspections to Reduce Errors in Program
Development", IBM Systems Journal, 15, 3, 1976, 182-211

Florac, William B., "Software Quality Measurement: A Framework for
Counting Problems and Defects", CMU/SEI-92-TR-22, September 1992
Freedman, D.P., G.M. Weinberg, "Handbook of Walkthroughs,
Inspections, and Technical Reviews", Dorset House Publishing Co., Inc.,
1990

Gilb, Tom and Dorothy Graham, “Software Inspection”, Addison Wesley
Longman Limited, 1993

Linger, R.C., H.D. Mills, B.I. Witt, "Structured Programming: Theory
and Practice", Addison-Wesley Publishing Company, Inc., 1979
Humphrey, Watts S., "Managing the Software Process", Addison-Wesley
Publishing Company, Inc., 1989

O'Neill, Don and Albert L. Ingram, "Software Inspections Tutorial",
Software Engineering Institute Technical Review 1988

O'Neill, Don, "Software Inspections Course and Lab", Training Offering
for Practitioners, Software Engineering Institute, 1989

O'Neill, Don, "Software Inspections: More Than a Hunt for Errors",
CrossTalk, Issue 30, January 1992

O'Neill, Don, "National Software Quality Experiment", International
Conference on Software Quality, Washington DC, 1994

O'Neill, Don, "National Software Quality Experiment: Results 1992-1995",
Software Technology Conference, Salt lake City, 1995 and 1996

O'Neill, Don, "Issues in Software Inspection”, IEEE Software, Vol .14
No 1., January 1997

O'Neill, Don, “Setting Up a Software Inspection Program”, CrossTalk,
The Journal of Defense Software Engineering, Vol. 10 No. 2, February
1997

O'Neill, Don, "National Software Quality Experiment: A Lesson in
Measurement 1992-1996", Quality Week Conference, San Francisco, May
1997 and Quality Week Europe Conference, Brussels, November 1997
O'Neill, Don, “Software Inspections and the Year 2000 Problem”,
CrossTalk, The Journal of Defense Software Engineering, Vol. 11 No. 1,
January 1998 '

Paulk, Mark C., “The Capability Maturity Model: Guidelines for Improving
the Software Process”, Addison-Wesley Publishing Company, 1995

Van Verth, Patricia B., "A Concept Study for a National Software
Engineering Database", CMU/SEI-92-TR-23, July 1992

Wallace, Dolores R., Laura M. Ippolito, and Herbert Hecht, "Error, Fault,
and Failure Data Collection and Analysis", http://hissa.ncsl.nist.gov,
Quality Week, San Francisco, May 1997

Software Engineering Workshop

AUTHOR: Don O'Neill

Don O’Neill is a seasoned software engineering manager and technologist currently serving as an
independent consultant. Following his twenty-seven year career with IBM’s Federal Systems
Division, Mr. O’Neill completed a three year residency at Carnegie Mellon University’s Software
Engineering Institute (SEI) under IBM’s Technical Academic Career Program. There he developed
a blueprint for charting software engineering evolution in the organization including the training
architecture and change management strategy needed to transition skills into practice.

As an independent consultant, Mr. O’Neill conducts defined programs for managing strategic
software improvement. These include implementing an organizational Software Inspections
Process, implementing Software Risk Management, and conducting Global Software
Competitiveness Assessments. Each of these programs includes the necessary practitioner and
management training.

In his IBM career, Mr. O’Neill completed assignments in management, technical performance, and
marketing in a broad range of applications including space systems, submarine systems, military
command and control systems, communications systems, and management decision support
systems. He was awarded IBM’s Outstanding Contribution Award three times:
1. Software Development Manager for the Global Positioning
Ground Segment (500,000 source lines of code) and a team of 70 software engineers
within a $150M fixed price program.
2. Manager of the FSD Software Engineering Department responsible for the origination
of division software engineering strategies, the preparation of software management and
engineering practices, and the coordination of these practices throughout the division’s
software practitioners and managers.
3. Manager of Data Processing for the Trident Submarine Command and Control System
Engineering and Integration Project responsible for architecture selections and software
development planning (1.2M source lines of code).

Mr. O’Neill served on the Executive Board of the IEEE Software Engineering Technical
Committee and as a Distinguished Visitor of the IEEE. He is a founding member of the National
Software Council and the Washington DC Software Process Improvement Network (SPIN). He
is an active speaker on software engineering topics and has served as the Program Chairman and
Program Committee member for several conferences. He has numerous publications to his credit.
Mr. O’Neill has a Bachelor of Science degree in mathematics from Dickinson College in Carlisle,
Pennsylvania.

Contact Information

Don O’Neill

Independent Consultant

9305 Kobe Way

Montgomery Village, Maryland 20886

Phone: (301) 990-0377
email: ONeillDon@aol.com
http://members.aol.com/ONeillDon/index.html

word count: 4,581

@Copyright Don O'Neill, 1998 12 Software Engineering Workshop

