4Pl
Model Checking Verification and

Validation at JPL and the NASA
Fairmont IV&V Facility -

Frank Schneider, Jet Propulsion Laboratory, Steve
Easterbrook, NASA IV&V Facility, Jack Callahan,
Todd Montgomery, West Virginia University

Funded by NASA’s Software Program, Office of
Safety and Mission Assurance UPN #232-08-5L

Model Checking: We use model checking to mean the
process of (1) abstracting a partial specification from
requirements and design elements for a reactive system and
(2) applying reachability analysis to the resulting partial
specification to validate that it has properties of interest. A
reactive system is one that takes input from its environment

at unpredictable times and responds according to a specific
set of rules.

The Problem and its solution:

Goal: Show applicability for and to gain acceptance for use
of model checking methodology in space craft development
efforts in NASA spacecraft development projects

Response: In response to this goal a project manager made a
design specification for a complex spacecraft (S/C)controller
available to us

The Specification:

1. Dual system with identical separate backup platform
2. Communication of state information from one to the other
System - design purpose is two fold:
1. Respond to and repair must-fix-external faults while
2. Completing high priority sequence execution
Checkpointing scheme allows:
1. Sequence execution to be frozen when fault occurs
2. Fault to be repaired
3. Rollback to start of last incomplete subsequence
4. Resumption of sequence execution.
Checkpointing scheme requires
1. Three seconds of aging for completed subsequences
Overall redundancy allows entire controlling subsystem to fail:
1. Failure is detected via communication mechanism
2. Backup system becomes Control & repairs fault
3. New Control system rolls back and resumes execution

Example: Sequence execution segment:

Beff?‘n Sequence First Check Points

F

/ SubsequenN ¥ \
b 4+
\ | \ Second /

: : Subsequence
Time Markers [sec] since start q
of subsequence or last mark point
s PRIME 4 BACKUP \
Prime init | Beckupinit |
RAM
PRIME NOMINAL ™ T 4 BACKUPNOMINAL
v \ 4
SEQUENCE IDLE
EQUENCE IDLE SFP Response
" e Power-up Fault
Power-up Fault St ate D at a Idle Idle
Idle Idle >
PaCkEt Resume SFP
gfistlilégle Done Activate Critical {&ctive
c.ti.vate Sequence SFP Critical Séequence -
Critical om aged rime
Sequence gﬂ;f;dt ACTIVE Sequence Lmarkpoint String
\ 4
v \ 4
{SEQUENCE CRITICAL l EEQUENCE CRITICAL
NS — = 2

Design Validation:

*Original state space without design abstraction contained

about 2787 states.

*Partitioned requirements into 5 equivalence classes

*Validated 6 Checkpoint requirements

‘Reduced state space to about about 130, 000 states

‘Found 3 Anomalies using SPIN Model Checker [Gerard
Holzman, Bell Labs, N.J.]

‘Run Time was about 30 seconds for each anomaly:

1. Repeated prime failure caused loss of synch with backup

2. Prime failure immediately at end of sequence resulted in no
rollback

3. Prime failure at second 2 after check point gave invalid
rollback point in backup system

Implementation Validation:

1. Used test harness for validation vehicle

2. Language is Tool command Language (Tcl)
3. Specify sequence to execute

4. Inject design faults
S

. Select data structures to output for state vector sequence to
examine
6. Look for design faults in output software implementation state
vector sequence

Implementation Validation of Design Anomalies

1. We did not see the first anomaly in the system - system
engineers noted that all faults take at least several minutes to
repair. Therefore , repair time was extended so that anomaly
one would not be seen

2. Our technique demonstrated that the second anomaly was in
the implementation.

3. Our technique demonstrated that the third anomaly was in
the implementation.

4. Project is addressing the issues of the three anomalies

Automation of Implementation:

1. Exactly as above but with an automaton replacing human scan of
output state vector sequence

2. Automaton accepting state corresponds to counter example:
If automaton is driven into accepting state
requirement is violated.

3. Anomaly three was validated with automaton

~ Abstracted State Vector
of Implementation

/

Digraphs of
Automaton,
Abstracted

Implement.
Machine

Future work:

1. Replace Test harness output by appropriately abstracted

state vector from executing spacecraft application

2. Develop counterexample requirements automaton for
currently executing application

3. Drive automaton from abstracted state vector in 1.

4. Use accepting state condition of automaton as fault
detection criterion to start fault recovery scheme.

Benefits:

1. Puts current fault detection and recovery schemes into
analytic framework

2. Counterexample automaton could be derived on-the-fly
for autonomous spacecraft applications

Tying it all Together

Having shown that we could

*Abstract a high level design from a specification for a
spacecraft

*Validate the design using model checking

*Validate the implementation

We decided to incorporate the model checking process into
our Quality Assurance processes:

*Currently there are about 21 processes.

*Process chart is flow chart that specifies logistics to follow
in carrying out a quality assurance process for a quality
process such a formal methods theorem proving, model
checking, software inspection, and the like

*Process Chart is accompanied by written description

