
Slide 1SATC 2/99

“Risk-Based Object Oriented Testing”

Software Assurance Technology Center

Goddard Space Flight Center - NASA

http://satc.gsfc.nasa.gov

Dr. Linda H. Rosenberg Ruth Stapko

301-286-0087 301-286-0101
Linda.Rosenberg@gsfc.nasa.gov rstapko@pop300.gsfc.nasa.gov

Al Gallo Michael S. Parizer
301-286-8012 301-286-7297

Al.Gallo@gsfc.nasa.gov mparizer @pop300.gsfc.nasa.gov

Slide 2SATC 2/99

Overview

Project Risk

Software Risk

Source Code Quality

Testing

OO Classes

Slide 3SATC 2/99

Requirements

Code

Design

Testing

Two Common Testing Methods

White Box

Testing Approaches

Black Box

Slide 4SATC 2/99

What Does Risk-Based Testing Do For Me?

It focuses on analyzing software and deriving

a test plan weighted on the areas most likely

to experience a problem that would have the

highest impact.

Risk - Based Testing

Slide 5SATC 2/99

• Risk is quantified by using the following equation:

 Ei is the i-th possible failure event

 p is the probability the event will occur

 c is cost of an event if it does occur

Risk-Based Testing

• Project Risk is characterized by two features:

c (Ei)

1) The probability of a potential failure event

2) The severity of its occurrence

Risk = ∑∑ p (Ei) *

Slide 6SATC 2/99

Risk-Based Testing

Cost/Severity factor c (Ei):

•

•

•

Depends on the nature of the application

Determined by domain analysis

Requires expert system knowledge

Slide 7SATC 2/99

Risk-Based Testing

1. Let c (Ei) represent the cost of a failure in a
particular component of the software

Software Risk

2. Use source code analysis to rank likelihood of
failure, p (Ei):

– Code that is more complex has a higher incidence of errors

– Example: Cyclomatic Complexity is a measure for ranking
the complexity of source code.

Slide 8SATC 2/99

Object Complexity

• Cyclomatic complexity measures standalone risk

– Can result in deceptively low values

• Object classes are not isolated!

Inheritance

Message passing

Slide 9SATC 2/99

Identification of High Risk Classes

Several metrics are available for comparing OO classes:

2. Weighted Methods per Class (WMC)

The sum of the cyclomatic complexities of
the methods in a class

1. Number of Methods (NOM)

A simple count of methods in a class
definition

3. Coupling Between Objects (CBO)

A count of other classes “bundled” with a
class (other than through inheritance)

Slide 10SATC 2/99

4. Response for a Class (RFC)

Count of all methods that an object of the
class could invoke. A “worst case” metric.

5. Depth in Tree (DIT)

How many levels is the class down from
the top? Measures “hidden” complexity.

6. Number of Children (NOC)

Child classes take advantage of reuse, but
all will suffer if parent classes are too
complex.

Identification of High Risk Classes

Slide 11SATC 2/99

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0-5 6-15 16-25 26-35 36-45 46-55 56-65 66-75 > 75

N
u

m
b

er
 o

f
cl

as
se

s

Number of Methods

NOM

Number of Methods per Class

Number of Methods <= 40
(Acceptable)

Number of Methods <= 20
(Recommended)

NOM measures both size and complexity of a class. It may be necessary to
trade off some efficiency to preserve maintainability.

Slide 12SATC 2/99

WMC

Weighted Methods Per Class

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0-25 26-75 76-125 126-175 176-225 226-275 276-325 326-375 > 375

N
u

m
b

er
 o

f
C

la
ss

es

Weighted Methods per Class <= 100

Weighted Methods per Class

WMC is defined here as the sum of the cyclomatic complexities
of the methods implemented in one class.

Slide 13SATC 2/99

Response for Class

Response for Class

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0-50 51-150 151-250 251-350 351-450

RFC

N
u

m
b

er
 o

f
C

la
ss

es

Response for Class <= 100

If RFC is high, the codes complexity is increased and its
understandability is decreased.

Slide 14SATC 2/99

Response for Class ÷÷ by NOM

C++ classes

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

<5X >5X

3.4%

Java classes

0

200

400

600

800

1000

1200

<5X >5X

22.8%

RFC <= 5 RFC <= 10

Experience tells us that this derived metric does a good job of finding
classes that require extra testing. Java code tends to have higher RFC
values.

Slide 15SATC 2/99

Coupling Between Objects

Coupling between Objects

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 > 40

CBO

N
u

m
b

er
 o

f
C

la
ss

es

Coupling Between Class <= 5

Coupling is a measure of inter-class complexity, a design issue. The larger
the CBO, the more sensitivity to changes, maintenance is more difficult.

Slide 16SATC 2/99

Number of Child Classes

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6-10 11-20 20+

No. of Children

%
 o

f
C

la
ss

es

Depth in Tree

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

0 1 2 3 4 5

Depth in Tree

%
 C

la
ss

es

Deeply nested inheritance may hide complexity. The
greater the NOC, the more likely the child classes will
have improper abstraction.

Depth in Tree & Number of Children

Slide 17SATC 2/99

So Many Metrics . . .

A single metric
should never be
used alone, look for
classes that have
more than one high
value.

Class # Methods CBO RFC RFC/NOM WMC DIT NOC

Class 1 54 8 536 9.9 175 1 0

Class 2 7 6 168 24 71 4 0

Class 3 33 4 240 7.2 105 2 0

Class 7 54 8 361 6.7 117 2 2

Class 8 62 6 378 6.1 163 2 0

Class 10 63 7 235 3.7 156 2 0

Class 11 81 10 285 3.5 161 2 0

Class 12 42 5 127 3 69 3 0

Class 14 20 17 324 16.2 139 4 4

Class 18 46 5 186 4 238 1 3 WMC

RFC

CBO

NOM

Slide 18SATC 2/99

Risk - Based Testing - Summary

Define High Risk

Identify components of High Risk

Rank High Risk components

Plan Extra Testing in High Risk areas
SOFTWARE

Slide 19SATC 2/99

Future Work

• Refine threshold values by programming
language, program size, application domain.

• Use multivariate techniques to find one or two
OO complexity metrics that quantify class risk

• Post-hoc validation of risk-based testing

Slide 20SATC 2/99

References

Chidamber S.R. & Kemerer, C.F., “Towards a Metrics Suite for Object Oriented
Design” Proc. OOPSLA, 1991

Li, W. & Henry, S., “Maintenance Metrics Suite for Object Oriented Paradigm”,
1st International Software Metrics Symposium, Baltimore MD, 1993

McCabe, Thomas J., “A Complexity Measure”, IEEE Transactions on Software
Engineering SE-2, pp 308-320, 1976.

McMahon, Keith, “Risk Based Testing”, ST Labs, WA, 1998.

Pfleeger, S.L. and Palmer, J.D., “Software Estimation for Object Oriented
Systems”, International Function Point Users Group Fall Conference,
San Antonio TX, 1990.

Rosenberg, Linda, and Gallo, Albert, “Implementing Metrics for Object Oriented
Testing”, Practical Software Measurement Symposium, 1999.

