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Overview

Project Risk

Software Risk

Source Code Quality

Testing

OO Classes
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Requirements

Code

Design

Testing

Two Common Testing Methods

White Box

Testing Approaches

Black Box
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What Does Risk-Based Testing Do For Me?

It focuses on analyzing software and deriving 

a test plan weighted on the areas most likely

to experience a problem that would have the 

highest impact.

Risk - Based Testing
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• Risk is quantified by using the following equation:

 Ei is the i-th possible failure event

 p is the probability the event will occur

 c is cost of an event if it does occur

Risk-Based Testing

• Project Risk is characterized by two features:

c (Ei)

1) The probability of a potential failure event

2) The severity of its occurrence

Risk = ∑∑  p (Ei) *
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Risk-Based Testing

Cost/Severity factor c (Ei):

•

•

•

Depends on the nature of the application

Determined by domain analysis

Requires expert system knowledge
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Risk-Based Testing

1.  Let c (Ei) represent the cost of a failure in a
particular component of the software

Software Risk

2.  Use source code analysis to rank likelihood of
failure, p (Ei):

–  Code that is more complex has a higher incidence of errors

–  Example: Cyclomatic Complexity is a measure for ranking
the complexity of source code.
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Object Complexity

• Cyclomatic complexity measures standalone risk

– Can result in deceptively low values

•  Object classes are not isolated!

Inheritance

Message passing
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Identification of High Risk Classes

Several metrics are available for comparing OO  classes:

2. Weighted Methods per Class (WMC)

The sum of the cyclomatic complexities of
the methods in a class

1. Number of Methods (NOM)

A simple count of methods in a class
definition

3. Coupling Between Objects (CBO)

A count of other classes “bundled” with a
class (other than through inheritance)
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4. Response for a Class (RFC)

Count of all methods that an object of the
class could invoke.  A “worst case” metric.

5. Depth in Tree (DIT)

How many levels is the class down from
the top?  Measures “hidden” complexity.

6. Number of Children (NOC)

Child classes take advantage of reuse, but
all will suffer if parent classes are too
complex.

Identification of High Risk Classes
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Number of Methods

NOM

Number of Methods per Class

Number of Methods <= 40
(Acceptable)

Number of Methods <= 20
(Recommended)

NOM measures both size and complexity of a class.  It may be necessary to
trade off some efficiency to preserve maintainability.
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WMC

Weighted Methods Per Class
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Weighted Methods per Class

WMC is defined here as the sum of the cyclomatic complexities
of the methods implemented in one class.
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Response for Class

Response for Class 

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0-50 51-150 151-250 251-350 351-450

RFC

N
u

m
b

er
 o

f 
C

la
ss

es

Response for Class <= 100

If RFC is high, the codes complexity is increased and its
understandability is decreased.
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Response for Class ÷÷ by NOM

C++ classes
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Experience tells us that this derived metric does a good job of finding
classes that require extra testing.  Java code tends to have higher RFC
values.
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Coupling Between Objects

Coupling between Objects
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Coupling Between Class <= 5

Coupling is a measure of inter-class complexity, a design issue.  The larger
the CBO, the more sensitivity to changes, maintenance is more difficult.
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Number of Child Classes
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Deeply nested inheritance may hide complexity.  The
greater the NOC, the more likely the child classes will
have improper abstraction.

Depth in Tree & Number of Children



Slide 17SATC 2/99

So Many Metrics . . .

A single metric
should never be
used alone, look for
classes that have
more than one high
value.

Class # Methods CBO RFC RFC/NOM WMC DIT NOC

Class 1 54 8 536 9.9 175 1 0

Class 2 7 6 168 24 71 4 0

Class 3 33 4 240 7.2 105 2 0

Class 7 54 8 361 6.7 117 2 2

Class 8 62 6 378 6.1 163 2 0

Class 10 63 7 235 3.7 156 2 0

Class 11 81 10 285 3.5 161 2 0

Class 12 42 5 127 3 69 3 0

Class 14 20 17 324 16.2 139 4 4

Class 18 46 5 186 4 238 1 3 WMC

RFC

CBO

NOM
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Risk - Based Testing - Summary

Define High Risk

Identify components of High Risk

Rank High Risk components

Plan Extra Testing in High Risk areas
SOFTWARE
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Future Work

•  Refine threshold values by programming
language, program size, application domain.

•  Use multivariate techniques to find one or two
OO complexity metrics that quantify class risk

•  Post-hoc validation of risk-based testing



Slide 20SATC 2/99

References

Chidamber S.R. & Kemerer, C.F., “Towards a Metrics Suite for Object Oriented
Design” Proc. OOPSLA, 1991

Li, W. & Henry, S., “Maintenance Metrics Suite for Object Oriented Paradigm”,
1st International Software Metrics Symposium, Baltimore MD, 1993

McCabe, Thomas J., “A Complexity Measure”, IEEE Transactions on Software
Engineering SE-2, pp 308-320, 1976.

McMahon, Keith, “Risk Based Testing”, ST Labs, WA, 1998.

Pfleeger, S.L. and Palmer, J.D., “Software Estimation for Object Oriented 
Systems”, International Function Point Users Group Fall Conference,
San Antonio TX, 1990.

Rosenberg, Linda, and Gallo, Albert, “Implementing Metrics for Object Oriented
Testing”, Practical Software Measurement Symposium, 1999.


