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Quantitative Methods Do Work

Quantitative methods, including statistical process control, can be effective tools for
predicting and evaluating product quality during development and test. The data analysis
and conclusions from applications of quantitative methods, including statistical process
control, to two projects that were major components of a software release to Bull HN
Information System’s GCOS 8 Operating System, will show how these techniques were
effective and useful. During development and test, we used the release quality predictions
as one of the project metrics. We found that analysis of inspection and test results using
SPC techniques helped us predict (perhaps understand is a better word) the release
quality and the development processes controlling the release quality. We were able to
answer the question “Can we ship this product?” with data rather than guesswork.

Inspections have been used in GCOS 8 development since 19901. The process is stable
and provides data used by project management2. Our goal in the current release was to
use defect density during development and test as input to predicting the post ship
product quality with reasonable assurance. We are aware of the problems with using
defects to predict failures (Adams3, Fenton and Pfleeger4), but in the absence of other
data or usage based testing results, this was what we had to evaluate release quality.

Prediction: Stable versus Unstable Processes
Predicting the future behavior of a process cannot be done unless the process itself is
stable. This is a reason for using statistical methods. A variety of techniques can be used
to evaluate the underlying process stability. Control charts can be used to calculate upper
and lower control limits (UCL and LCL). Processes that stay within limits and do not
exhibit other indications of lack of control can be assumed to be “controlled processes”.
This implies several things about the process:

• Past performance can be used to predict future performance within the control
limits

• Process capability relative to a customer specification can be determined

Estimating Defect Injection
Previous inspection process and product data were evaluated and estimates were made
for:

• Defect injection rates
• Defect removal rates (inspection effectivenessI)
• Defects entering unit test

Prior inspection, test, and post ship defect history was used to estimate the defect
injection rate. This is a potential area for applying SPC. With enough data, you can
establish ranges for defect injection rates, accuracy of size estimates, and inspection

                                                
I Inspection effectiveness is the percentage of major defects removed in each inspection phase, or total
defects removed in inspections, divided by the total number of defects in the product at the time of the
inspection. Since the total number of defects discovered is never known until a product is retired from use,
effectiveness is always an estimate, but one that changes very slightly after a product is shipped, assuming
reasonable post ship quality levels.
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removal effectiveness. For these projects we did not have sufficient data samples to do
this, so we based our estimates on specific product and project history.

The size, defect injection rates, and prior inspection data were used to develop a defect
injection and removal profile.
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Figure 1 – Initial Defect Injection and Removal Estimate

Inspection Data Analysis
On these two projects the first opportunity to apply SPC was during code inspections. On
one project, the work was divided into two parts; the creation of a product feature, and
the revision of existing code.  A histogram of preparation rates in lines of code per hour is
shown in Figure 2.
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Figure 2 – Preparation Rate Histogram
Outliers were examined and eliminated when special causes of variation were discovered.
I also compared the preparation rate distribution to the inspection rate, shown in Figure 3.
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Figure 3 – Inspection Rates for 30 inspections
This bimodal distribution was caused by two types of code, “new”, and changed.  Figure
4 shows these 2 classes separately.

New

0

1
2

3
4

5

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

M
or

e

Changed

0

1

2

3

4

5

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Mor
e

Figure 4 – New vs Changed Inspection Rates
I expect new code inspections to be “better behaved’ than changes to existing code.
(Many inspections of modified code are small in size, causing preparation and inspection
rates to have a larger variance. Knowledge of the changed (old) code inspected may also
have a wider variance than the new code). The separate views in Figure 4 are typical of
much of the inspection data I investigate. The new code approximates a normal
distribution as closely as you may see with real data.

A control chart for this data with special causes removed showed a well controlled
process:
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Figure 5 – Preparation Rate with Outliers Removed
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Figure 6 – Defect Density Control ChartII

What have we learned about this product and its contribution to the system release? With
two exceptions, the inspection process seems to be well controlled. The outliers were
investigated (as were other inspection meetings) to understand how well the inspection
process was performed. In this case, the outliers were for inspections of changed code, so
these outliers were evaluated as caused an assignable cause, and the defect data was
within control limits.

Once we were reasonably confident the inspection process was controlled, we developed
defect depletion curves for the projects and the system release.
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Figure 7 – Defect Depletion at End of Code Inspection

                                                
II The lower control limits cannot be less than zero, although for convenience the LCL was plotted on this
chart as calculated. Once you verify the data is above the LCL, for possible values of LCL, it is probably
better to delete this line from the chart.
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Figure 8 – Replotted Defect Depletion with New Size Estimate

Unit and Integration Test
Both projects kept accurate records of defects found during Unit and Integration test.
Both projects developed test objective matrices and developed test plans and
specifications, so we had some expectation to remove defects more effectively than the
30-50% “norm” often quoted in the industry.
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Figure 9 – Project One Defect Depletion

Figure 9 shows project one, as it was about to enter System Test (this chart is used in our
monthly project review as well as the weekly team meetings). It shows the re-estimate for
the number of defects injected. Note the defect removal in Unit Test was higher than
estimated and that subsequently in the two phases of Integration Test a small number of
defects were removed. Without accurate defect removal data from Unit Test these low
numbers would be of more concern with respect to product quality. The Current Timeline
is indicated to show the furthest stage where the project defect removal is happening.

This analysis continued through System Test as shown in Figure 10.
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Figure 10 – System Test
Conclusions
You should ask two questions about any metric or analysis technique:

• Is it useful? Does it provide information that helps make decisions?
• Is it useable? Can we reasonably collect the data and do the analysis?

We found that the knowledge we gained about product quality and the processes used to
develop these products gave a definite “Yes” to both these questions.
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