
DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

A classification of software
components incompatibilities for

COTS integration

Daniil Yakimovich
University of Maryland

Guilherme H. Travassos
University of Maryland / Federal University of Rio de Janeiro

Victor R. Basili
University of Maryland / Fraunhofer Center for Experimental

Software Engineering

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Outline
• The COTS usage and problems

• Effort estimation model for integration

• Incompatibility classification

• Examples of incompatibilities

• Classes of issues and integration strategies

• Example of applying the classification for
COTS selection

• Conclusions and future work

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

COTS usage

COTS (commercial-of-the-shelf) - commercially
available, can be used as a part of a new system

Potential benefits:

Quality increase, Effort reduction

Issues:

Selection, Integration, Security, etc.

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

The integration issues

COTS products are developed in certain context
but used in different projects.

Therefore, there exist incompatibilities:

• Functional

• Architectural

• Other

The incompatibilities must be predicted and
overcome.

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Selection and Integration

Selection must take in to account the
integration cost

An algorithm for integration effort estimation:

• Find the incompatibilities between the
COTS products and the system

• Estimate the effort of their overcoming

• Sum up these efforts for all
incompatibilities and all COTS components

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Effort estimation

Integration Effort (staff-hour) =

 Amount of Work / Productivity

Amount of Work - the difference between the
requirements and the reused COTS (LOC) -
depends on the incompatibilities

Productivity depends on the organization
(LOC/staff-hour)

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

The approach

The incompatibilities are failures of interactions
between components.

Thus, classifying the interactions can help to classify
the incompatibilities.

Three interaction aspects:

• type of interacting components

• layer (syntax or semantic-pragmatic)

• number of interacting components

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Types of interacting
components

A software component can interact with:

Interactions with

System Environment

Software Hardware Development Target

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Interaction layers

• Syntax - how the syntax rules of the
interaction are defined,

e.g. float SQRT(float x)

• Semantic-pragmatic - how the functionality
of the interaction is defined,

e.g. function SQRT calculates the square
root of a non-negative number x

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Number of interacting
components

Semantic-pragmatic layer depends on the
number of interacting components

• 1-order - component itself (internal fault)

• 2-order - interaction of two components
(mismatch)

• n-order - interaction of three and more
components (conflict)

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Examples of incompatibilities

• Syntax: different names, different binding,
different languages

• Semantic-pragmatic
– 1-order: wrong functionality

– 2-order: metric units vs. inches, different
synchronization, different encodings

– n-order: data sharing violations, simultaneous
access, name space collisions

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Classes of issues
Type of component System Environment

Type of incompatibility Software Hardware Development Target
Syntax I,A I I(?),A I(?),A

Semantic-pragmatic
1-order

F,NF F,NF F,NF F,NF

Semantic-pragmatic
2-order

I,A I I(?),A I(?),A

Semantic-pragmatic
n-order

C C C(?),A C(?),A

F – functional problem
NF – non-functional problem
A – architectural problem

C – conflict problem
I – interface problem

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Integration strategies

• Functional - re-implementation

• Non-functional - discarding the COTS?

• Architectural - changes in the architectural
style

• Conflicts - changes in the architecture

• Interfaces - glueware

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Example

System requirements
Functionality: drawing 3D objects, input

and output for 3D images from files

Non-functional issues (portability): Mac

Architectural issues (packaging): Ada

Interface: procedure
Rectangle(x,y,w,h:real);

COTS: QuickDraw3D
Functionality: all functions are

provided

Non-functional issues: Mac is
supported

Architectural issues: Ada
implementation is not available

COTS: OpenGL
Functionality: input and output for 3D
images from files is not provided
Non-functional issues: Mac is
supported
Architectural issues: Ada
implementation is available
Interface: procedure
glRectf(x1,y1,x2,y2:Glfloat);

COTS: DirectX
Functionality: all functions are provided
Non-functional issues: Mac is not
supported
Architectural issues: Ada
implementation is not available

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Conclusions
• We presented a classification of incompatibilities

between software components and other parts of
a system

• We provided some insight on the issue of COTS
integration with respect to finding and
overcoming incompatibilities

• We outlined an approach for integration effort
estimation

DCS/ESEG Fraunhofer Center - Maryland
UFRJ
COPPE

Ongoing work

• Validating this classification in practice
(NASA/SEL)

• Improving the proposed COTS selection and
integration approach based on this
incompatibility classification

