A classfication of software
components incompatibilities for
COTSintegration

Daniil Y akimovich

University of Maryland

Guilherme H. Travassos
University of Maryland / Federal University of Rio de Janeiro

Victor R. Bagli

University of Maryland / Fraunhofer Center for Experimental
Software Engineering

I@? UNIVERSITY OF e
My MARYLAND 1@»> UFR) ezl
-
Fraunhofer Center - Maryl

Outline

 The COTS usage and problems

o Effort estimation model for integration

e Incompatibility classification

* Examples of incompatibilities

o Classes of I1ssues and integration strategies
 Example of applying the classification for

CO

S selection

e Conclusions and future work

SSSSSSSS

PPPPP

COTSusage

COTS (commercial-of-the-shelf) - commercially
avallable, can be used as a part of a new system

Potential benefits:
Quality increase, Effort reduction
| Ssues:
Selection, Integration, Security, etc.

Theintegration Issues

COTS products are developed in certain context
but used in different projects.

Therefore, there exist incompatibilities:
e Functional

o Architectural

e Other

The incompatibilities must be predicted and
overcome.

EEEEEEEEEEEEEE

Selection and Integration

Selection must take 1n to account the
Integration cost

An algorithm for integration effort estimation:

 Find the incompatibilities between the
COTS products and the system

» Estimate the effort of their overcoming

e Sum up these efforts for all
Incompatibilities and all COTS components

EEEEEEEEEEEEEE

Effort estimation

| ntegration Effort (staff-hour) =
Amount of Work / Productivity

Amount of Work - the difference between the
requirements and the reused COTS (LOC) -
depends on the incompatibilities

Productivity depends on the organization
(LOC/staff-hour)

EEEEEEEEEEEEEE

The approach

The incompatibilities are faillures of interactions
between components.

Thus, classifying the interactions can help to classify
the incompatibilities.

Three interaction aspects:

e type of interacting components
 |ayer (syntax or semantic-pragmatic)
e number of interacting components

SSSSSSSS

Types of interacting
components

A software component can interact with:

Interactions with

System Environment
Software Hardware Development Target

|nteraction layers

o Syntax - how the syntax rules of the
Interaction are defined,

e.g. float SOQRT(float x)

e Semantic-pragmatic - how the functionality
of the interaction is defined,

e.g. function SOQRT calculates the square
root of a non-negative number X

EEEEEEEEEEEEEE

Number of interacting
components

Semantic-pragmatic layer depends on the
number of interacting components

e 1-order - component itself (internal fault)

o 2-order - interaction of two components
(mismatch)

e n-order - interaction of three and more
components (conflict)

EEEEEEEEEEEEEE

Examples of incompatibilities

o Syntax: different names, different binding,
different languages

o Semantic-pragmatic
— 1-order: wrong functionality

— 2-order: metric units vs. inches, different
synchronization, different encodings

— n-order: data sharing violations, ssimultaneous
access, name space collisions

Classes of 1ssues

Type of component System Environment

Type of incompatibility | Software | Hardware | Development | Target
Syntax l,A I 1(?),A 1(?),A

Semantic-pragmatic F,NF F,NF F,NF F,NF
1-order

Semantic-pragmatic l,A I 1(?),A 1(?),A
2-order

Semantic-pragmatic C C C(?),A C(?),A
n-order

F —functional problem

NF — non-functional problem

A —architectural problem

,ﬁ; UMNIVERSITY OF
< MARYLAND

DCS/ESEG

N

’{ UFRJ

s COPPE

C — conflict problem
| — interface problem

| | HH
| | HHH
ez i
Fraunhofer Center - Maryland

SSSSSSSS

|ntegration strategies

Functional - re-implementation
Non-functional - discarding the COTS?

Architectural - changesin the architectural
style

Conflicts - changes in the architecture
Interfaces - glueware

Example %

: provided
System requirements Non-functional issues; Mac is
Functionality: drawing 3D objects, input supported

and output for 3D images from files
Non-functional issues (portability): Mac
Architectural issues (packaging): Ada

Architectural issues. Ada
Implementation is not available

Interface: procedure
Rectangle(x,y,w,h:real); % COTS: OpenGL
=—+ Functionality: input and output for 3D
% | imagesfrom filesis not provided
= Non-functional issues: Macis
' COTS: DirectX Supported

Architectural issues. Ada
Implementation is available
Interface: procedure
olRectf(x1,y1,x2,y2:Glfl oat);

" Functionality: all functions are provided

' supported

Architectural issues: Ada
' Implementation is not available

. Non-functional issues: Mac is not

Iﬁ; UMIVERSITY OF -
W MARYLAND 1@»> UFR) og
DCS/ESEG .,_'- COPPE Fraunhofer Center - Maryland

Conclusions

» \We presented aclassification of incompatibilities
between software components and other parts of
asystem

» \We provided some insight on the issue of COTS
Integration with respect to finding and
overcoming incompatibilities

* \We outlined an approach for integration effort
estimation

SSSSSSSS

SSSSSSSS

Ongoing wor k

« Validating this classification in practice
(NASA/SEL)

* Improving the proposed COTS selection and
Integration approach based on this
Incompatibility classification

PPPPP

