Bottom-up, Open, and Concurrent:

A Perspective on Development Processes for Scientific Software Systems

Jing Guo* and Peter Lyster!
Data Assimilation Office, Code 910.3, NASA /GSFC

November 28, 2000

Abstract

Development processes for scientific software systems are often characterized as ad
hoc, if not chaotic. However, there are some common characteristics in these processes,
including, a) development of software from the bottom-up with clear objectives, but
with little up-front planning or formal design; b) open modification with little apparent
central control; ¢) concurrent changes involving groups of loosely connected developers.
Some of these practices may be properly challenged when the systems become large.
However, maintaining certain aspects of them may be desirable, or even critical to
the survival of some projects that rely heavily on the incorporation of cutting edge
domain sciences and computational technologies. This paper will discuss these issues,
and relate them to the development process of the NASA Data Assimilation Office’s
(DAO) Physical-space Statistical Analysis System (PSAS). Efforts have been made
to learn from successful development experiences and to define software engineering
practices that will sustain long-term development of the PSAS.

1 Introduction

Scientific software systems are characterized not only by their complexity but also by
the sometime radical development efforts achieved by apparently undisciplined software
engineering practices. There are often only small groups of elite developers who are priv-
ileged to make direct contributions to the major development stages of the software,
such as, requirements analysis, design, implementation, and maintenance. Develop-
ment processes for this class of systems are in general not well understood. Attempts to
implement formal software engineering processes in these projects are sometimes chal-
lenged by the core developers. These formal processes are perceived to be inefficient
for the rapid concurrent development efforts that are necessary to meet the scientific
and technological requirements of the software products. We will discuss some of these
issues in relation to the development of the Physical-space Statistical Analysis System
(PSAS)[2] at NASA/Goddard Space Fight Center’s Data Assimilation Office (DAO).
The PSAS is a complex scientific computing system designed to solve large-scale lin-
ear systems of equations defined by error covariance matrices with ~ 10*—10° unknowns.
The PSAS was developed from scratch involving a total of less than a dozen developers
over a ten year period in ~ 20 man-years. The software core is a programming environ-
ment supporting advanced covariance modeling. Despite its own complexity, the PSAS

*mailto:jguo@dao.gsfc.nasa.gov. Also affiliated: SAIC/General Sciences Corporation, Laurel, MD
Tmailto:lys@dao.gsfc.nasa.gov. Also affiliated: University of Maryland Earth System Science Interdisci-
plinary Center (ESSIC), College Park, MD

is just one of several complex subsystem components of the DAQO’s Data Assimilation
Systems.

The developers of the PSAS include scientists with advanced degrees in different
fields, such as mathematics, meteorology, and physics, with strong background in sci-
entific computing but differing levels of experience in operational software and system
development. They were assembled from DAQO, other organizations in NASA, and
through outside hiring. Often, they shared a common interest in developing good soft-
ware for scientific software systems, but had little or no previous training in software
engineering before they joined the project.

The first version, circa 1994, was more than 10 thousand lines of code, while today
the PSAS is about 90 thousand lines of code. The software has grown through several
important development cycles and has continuously supported the DAQO’s scientific re-
search efforts and its data assimilation systems. Through these development cycles, the
consensus among developers has been to improve the development processes whenever
and wherever they can. Much of the debate has surrounded the early attempts to follow
a formal software engineering process for overall system development, and how much
this process should be applied to the development efforts of scientific components such
as the PSAS.

A practical, and perhaps less risky, approach to process improvement is to follow the
initial process as the baseline, and improve it as necessary. However, looked at from the
outside, the initial process appears to be nothing but ad hoc and relying on “heroic”
efforts. Despite many successes of similar processes for large-scale scientific software
systems, it remains open to such criticism. However, to experienced scientific software
developers, a pattern of the processes, although generally unnamed, does exist in day-
to-day practices. This pattern seems to be repeatable and produces quality scientific
software. Also, this pattern is in fact well understood by developers in various scientific
fields such that projects are often safely passed from one qualified developer to another
through rather limited communication and documentation.

The purpose of this paper is to describe certain common characteristics of actual
development processes, with a developer’s perspective on why they are natural and
important to scientific software. We will also discuss efforts to incorporate this under-
standing into software engineering processes that are used by the PSAS developers.

2 Characteristics of Actual Processes

In this paper, three common characteristics of actual processes for the development of
scientific software systems are discussed. They are, a) development of software from
the bottom-up with clear objectives, but with little up-front planning or formal design;
b) open modification with little apparent central control; and ¢) concurrent changes
involving groups of loosely connected developers. The details will be explained below.

2.1 Bottom-up

The development of a scientific software system is often started with clear scientific
objectives, but very informal, if any, up-front requirements analysis, project planning, or
software design at the high-level. Scientific software developers often start to write code
based on a general description of equations, before many high-level issues considered
critical to software engineers have been formally specified. This approach of developing
code as soon as possible and delaying or even avoiding top-down up-front system wide
activities is referred in this paper as bottom-up.

Despite possible reasons why this bottom-up approach could be problematic for
project management, there are reasons why this approach is natural to a scientific
software development process:

X ~<——— Projects

e

Y
Validation c
=
7 Z
Testing .8
= 2
Integration §
B
Implementation Component Development

Figure 1: A component development process is driven by near- to long-term scien-
tific and operational requirements, and requires constant innovation to incorporate
cutting edge science and computational technologies. A system integration process
is driven by individual projects, and focuses on realizing system integration, test-
ing, and validation using available system components.

e Contrary to appearances, the up-front scientific objective of the project represents
abstract yet unambiguously concrete requirements to scientific software develop-
ers. The scientific requirements may be subject to some detailed clarifications.
However, rewriting the requirements in a language understandable by average
software engineers could be very challenging. In some cases, it may even open the
door to ambiguous or misleading interpretations.

e A system is constructed by interdependent software components. It can not be
built if its components are not available. When a scientific requirement becomes
well understood, the primary risk for a system development project would be
any unavailability of its components. Therefore, it is just a common sense risk
mitigation to rapidly construct (i.e. to code) a working prototype to allow further
scientific and software developments, before any commitment to costly formal
implementation efforts.

e A software component may support a number of system development efforts se-
quentially or concurrently during its life-cycle. This may be through single or
multiple releases with similar but evolving requirements. Therefore, component
developers must have a strategic view of the future direction of the component,
while customizing the releases to meet the requirements of different projects.

In short, this bottom-up approach is component developments first, system integra-
tion later. Although it seems to be just a “common sense”, this approach suggests
two separate dimensions in scientific software development processes. One dimension is
for component development that is driven by near- to long-term strategic scientific and
operational requirements of the organization, and focuses on supporting innovations in
the domain science. Another dimension is for system integration, driven by individual
projects and focuses on realizing integration, testing, and validation (Fig. 2.1).

By bottom-up, we do not exclude system wide requirements analysis, project plan-
ning, and software designs, but merely emphasize that different types of development
may be better managed by following different process models with different objectives.

For example, despite many projects may wish otherwise, a system integration project
can only be reliably supported on a reasonable schedule using components with reliable
release time. Therefore, a system integration project should be advised to focus on
understanding the baseline system as well as describing expected changes based on

available or near-term component releases. It should adapt a process that serves its
purposes well, and avoid wasting its efforts on managing dynamic development processes
of all its components through a top-down approach. On another hand, component
developments may better serve an organization and its near- and long-term future system
development projects by adapting a process that will promote innovations addressing
critical scientific and operational requirements.

For most scientific software, the developers have to constantly seek improvements to
the software, to meet the growing demands by its user community. Through the process,
except the basic scientific and operational requirements, all aspects of software, includ-
ing data structures, interfaces, algorithms, and even the architectures, could be altered
whenever it is necessary. A software solution for a specific problem may finish its whole
life-cycle from being proposed to being either accepted or rejected in minutes, hours,
or days, depending on its implementation costs. In this context, software engineering
practices to be applied to this class of component developments but with improper time
scales, may be helpful neither to the quality of the software nor to the performance of
a development team. In particular, high-level practices that unnecessarily increase the
level of communications should be avoid.

2.2 Open

Changes to scientific software are often made directly by scientific developers without
a formal change management process. This practice is often in conflict with software
engineering efforts to enforce a centralized change management mechanism both for the
resource management of a project and to ensure the software integrity of a system. For a
scientific software system, we believe that not all aspects of software change management
should be centralized — in fact, reliable and more efficient decentralized mechanism are
possible. In another words, scientific software development should be made more open.

By open we do not mean, for example, placing code on an ftp site such that sci-
entists in other parts of world can use the code for free. Nor are we referring to the
generation of standards for application programming interfaces such that some soft-
ware developers can develop standard conforming software components and others can
develop applications using them. These are important but separate issues.

By open, we intend to allow, to invite, and to guide, users and other developers to
contribute to the PSAS software, sometime without the consent of the main developers,
in the forms of bug fixes, code improvement, customization, or major developments.

The reasons for open PSAS development are: First, as a component, the PSAS
must support the DAQO’s system development efforts by customizing the software to
meet the requirements of different system integration projects. However, for various
reasons, the main developers are often not available or the best candidates for the jobs.
Second, the user community of the PSAS software is an extremely valuable resource for
its development as well as for its quality assurance. Third, no state-of-the-art scientific
software system can be fully developed without helps from broader scientific community.

Based on these reasons, as well as the experience of the PSAS developers with soft-
ware version management, including observations on the software development practice
advocated by Open Source[4], the following practices have been consciously followed in
the recent PSAS development activities to create an open environment:

e The principle of “release early and often”[4] is adapted to provide an effective
peer-review mechanism that allows more people to review and to test the code in-
formally before a decision may be needed to include a change or a new development
in a release.

e System integrators are allowed to modify the code and commit the changes back to
the software repository with or without main developers’ consent, since the inte-
grators have a larger responsibility to make software components to work together
in the targeted systems.

e Other users or developers are also encouraged to contribute to the development
of the PSAS through its software repository, from simple bug fixes to major de-
velopments, or some controversial new features.

e Except for obvious cases, the PSAS developers have tried to be inclusive to dif-
ferent solutions brought to the system by different developers by improving the
architecture of the software and assisting developers on improving their software
designs. By doing so, sensitive decisions could be deferred to a later stage of the
system development and be made by system integrators or other users.

The central concept of this open approach is that users and developers are encouraged
to make decisions on the implementation of a change, based on their own scientific as
well as personal managerial judgment. It is often the case that only developers and users
have the detailed knowledge about a software module in a complicated scientific software
system — this knowledge having been achieved after extensive research or through much
trial-and-error. Also, a change can often be implemented and tested quickly requiring
little or no additional resource, if the decision has been made by the developer who is in
the right place and at the right time to make the change. After a change is committed the
new code will automatically be subject to code peer-review in the broader development
environment. This practice is based on the concept described as “Linus’s Law” by Eric
Raymond, or “Given enough eyeballs, all bugs are shallow” [4].

A common concern with the open approach for software change is the possibility of
losing control. We should point out that with the open approach:

e Higher level controls over software changes are still practiced, except that the focus
of higher level controls is on evaluating releases with changes already successfully
implemented, not on evaluating all changes, including some that may never be
implemented.

e Detailed decisions are made by people who have the detailed knowledge about
the problems and the solutions, not by people who may be at higher levels but
do not know enough details for a sound judgment. This should give people more
confidence on the overall decision.

e Many aspects of code inspection and testing are now embedded in the process.

e Fragmented resources as well as developers with various skills of different levels
can be more efficiently used.

e With a proper software version management, all changes can be retracted and
reviewed down to the code level if necessary.

One scenario of a functioning team involves roles as developers who are given the
responsibility to decide and implement changes in a software component. Another role
is the curator who has separate responsibility for the releases of the component. The
decisions to be made by the curator will be simplified and focused: for example, on
whether certain changes meet relevant requirements; if a release should include certain
changes; or if additional tests and resources will be needed to finalize the release.

An open development process requires a shared software repository. When properly
managed, this combination is expected to be a powerful mechanism to encourage users
and developers from different paths to work on the same scientific software in a col-
laborative way. The authors’ experience with the PSAS development has been positive
towards this expectation. This expectation has also been further inspired by the success
of the Linux operating system development[4]. However, details of the approach, as well
as the possible metrics measuring the success of the approach, remain to be worked out.

2.3 Concurrent

It is very common for different scientific software developers to work on the same soft-
ware at the same time, to address different problems, from the same or even different

software baselines. This practice creates a concurrent development pattern, which allows
multiple developments to proceed in parallel. Developers often follow this development
pattern unconsciously by working from copies of the same software, unawarely make
changes requiring some major work before their developments can be integrated back
into the same software. In fact,

e most development activities taking place are concurrent, and poorly managed;

e The more open the development is, the more concurrent these development activ-
ities become;

e Without a good mechanism to coherently organize these activities, concurrent
developments will become redundant at the best, divergent as a normal result,
and conflicting at its worse but not uncommon.

To address these issues, the popular Concurrent Version System (CVS)[3] has been
used as the tool to support the PSAS software version management activities. Particu-
larly, its version management model has been adapted as a guidance to understand the
life-cycles of concurrently developed software. A code change, either small or large, will
not be considered done if it has not been committed to the software repository.

A key issue for managing concurrent development is how to resolve conflicts between
developments. Instead of avoiding conflict by either through a traditional lock-modify-
unlock version control mechanism or branching the developments, the CVS’ copy-modify-
merge model[3] forces concurrent developers to face conflicts when and where conflicts
occur. Changes are not allowed to be committed by the CVS until all appending
conflicts are somehow resolved. On another hand, the CVS shows the code conflicts
only when they physically occurred. If managed properly, conflicts between concurrent
developments may occur much less than people imagined.

Additionally, conflicts between concurrent development efforts can be reduced by a
more modular software design. This approach in turn allows the development to be
more open. It also emphasizes a need for a knowledgeable curator in a natural conflict
resolving process. The curator will determine the releases of the component, and issue
a “decree” only if an agreement can not be reached between conflicting developers.

One interesting thing should be noted. Combining open and concurrent, develop-
ers are given more decision (making changes) and implementation (merging changes)
responsibilities over the software. When this happens, developers become much more
careful and creative to ensure that changes are consistent and graceful.

3 Summary

To many scientific software developers, the processes involved in the successful devel-
opment of scientific software systems should be understood as fairly typical and repeat-
able. In this paper, we tried to identify some common characteristics of these processes
based on our experience with the development of the PSAS, and described these char-
acteristics as bottom-up, open, and concurrent. We believe that these characteristics
are natural because of the complex, exploratory, and collaborative nature of scientific
software developments. We also believe that these characteristics are critical to the
success of scientific software system development projects of the similar class, since in a
competitive scientific development environment, rapid innovations are critical to make
scientific software systems acceptable by its user community, despite of the high risks
involved.

On another hand, processes practiced by many scientific software development are
often considered ad hoc by people from other disciplines of software system development.
Many efforts were even made to implement “right” processes with mixed results.

Instead of trivializing the actual processes practiced by many scientific software de-
velopers, the authors believe that one should try to understand and apply successful

practices in these processes, then improve the processes by improving these practices
not replacing them unnaturally, since these characteristics do not have to conflict with
good software engineering practices. Nevertheless, requiring bottom-up, open, and con-
current may present challenges to the engineering management of similar developments,
because few studies are available in this area. We are pleased to see that some studies
are becoming available recently in this direction. For example, a study by Ambrosiano
and Peterson[l] suggested that the process model for scientific research software de-
velopment is not an engineering workflow, but an exploratory workflow. We hope that
this paper represents our efforts of improving software engineering processes for sustain-
able scientific software development, and provides a useful perspective on development
processes from a developers’ point of view, based on our very preliminary observations.

References

[1] Ambrosiano, J., and M. Peterson, 2000, Research Software Development Based
on Exploratory Workflows: The Exploratory Process Model (ExP), Los Alamos
National Laboratory, LA-UR-00-3697.

[2] Cohn, S.E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998, Assessing the
Effect of Data Selection with the DAO Physical-Space Statistical Analysis System
Mon. Wea. Rev., 126, 2913-2926.

[3] Fogel, K., 1999, Open Source Development With CVS, http://cvsbook.red-
bean.com/, The Coriolis Group (http://www.coriolis.com)

[4] Raymond, E.S., 2000, The Cathedral and the Bazaar, http://www.tuxedo.org/ esr/
writings/cathedral-bazaar /cathedral-bazaar/

