
JPL

DC&SE Group
LH(369)-12/04/2000

GSFC-SEW25, 11/29/00

L. Hall, Principle Arthor & Technical Group Supervisor
ReUse/OO-Component Team

(C. Hung, C. Hwang, A. Oyake, J. Yin)

COTS-based OO-Component Approach for
• • •

Software Inter-operability and Reuse
* * *

(Software Systems Engineering Methodology

JPL

DC&SE Group
LH(369)-12/04/2000

Distributed Computing Technology Evolution
*** S/W ReUse - Components ***

Distributed Computing Technology Evolution
*** S/W ReUse - Components ***

No Network Infrastructure Network Infrastructure
(proprietary) (open)

ComponentsObjectsFunctionsPrivate

COM/DCOM

JavaBean/RMI

CORBA (3.0)
Component
Model - CCM

XML (data format)

DCE (1.1) DCE (1.2)

Socket CORBA (1&2)

RPC

DecNet

SNA

AppleTalk

• Distributed Computing allows modern software structure to occur across distributed
 networks in an increasingly flexible and effective manner.

• Software Component Technology allows distributed application pieces to flexibly be
 reused, inter-operate, and evolve over time.

• OO-Component Approach to S/W SE provides reusable infrastructure and generic s/w components
 for common services across subsystems (includes communications and application services)

• Benefits (= Cost Savings) - Interoperability (old/new/diff.), Extensibility (design patterns), Easy Reuse, Easy
 Assembly (additions after delivery), Runtime Flexibility (static/dynamic/swap, Adaptability, Enforce OO
 Design (standard), Development Flexibility (independent environments, different implementations of services)

(none)

(custom)

(new)

(new)

JPL

DC&SE Group
LH(369)-12/04/2000

• Tiered design architecture for flexible change or growth
• Separate application-specifc code from support services
• Well-defined API’s with wrapped configurable services

Potential ReUsable Generic
Communication & Application
Component-based S/W Services

• • •

GLUEw are

S ymbol
Tab le

Gene ric I/O Se rvice s Com ponents

MON-1DIRECTIVE EVENT

• Infrastructure
 (OO-Framework)
• OO-Compo nents
• Co mmun ication
 I/F S tandard

(DCE, DCOM, CORBA, TCP/IP, ...)

Monitor
&

Co ntrol

S /C
Rule
S S

(Plan'n)

Us er-
De fine d
Func tion

Context
Variable• • •

• • • • • • • • •

• Ge neric Us e r App lica tion
 S erv ices
• OO-Compo nent Tec hn ology
• Vis ion o f S cripting Major
 Portio n o f S /W Systems

S /C
Mo de l'n

Tas k Boundary

Generic Applic ation Serv ic es Components

(GLUEw are - G ateway Linking User Enviro nm ents)

(Enabling S upport S /W)XML
(new)

Express ion
Evalua tor

PUB/SUB

JPL

DC&SE Group
LH(369)-12/04/2000

• Background:
 - Performed same application prototypes based on 2 open standards
 [used same tiered architecture & OO-component approach w/C++, UNIX]
 1) Microsoft’s COM - I/F definition to wrap DCE-based custom services
 > 2) COTS-based CORBA - replaced custom services w/COTS components

• Objectives:
 - S/W engineering methodology or framework to allow an archtitectural
 roadmap which promotes flexible selection and reuse of system elements
 - Reusable common S/W services and supporting infrastructure
 - New technology risk mitigation effort to reduce traditional development
 problems and gain benefits of forward-thinking solutions

• How:
 - Object-oriented techniques (design patterns, inheritance, wrapping, ...)
 - S/W component structuring concepts based on open standards for
 reusable , reconfigurable common services
 - Max use of proven COTS services, yet no inter-mingling inside application-

specific code

Background & ObjectivesBackground & Objectives

JPL

DC&SE Group
LH(369)-12/04/2000

Component Deployment & Management Strategy or Roadmap
[Backup]

Component Deployment & Management Strategy or Roadmap
[Backup]

Developer
Environment

Component
Editing

Component Registion,
Naming Services,
& Config. Mgnt.

Component Repository
Manager

component
template

files

 Local
Components

Component
Registry

Runtime Loader

SecurityFTP/ORB/...

Component
Lookup/Retrieval

Remote
Components

Component
Library

AdministratorS/W Application

user user user

send
component

send/receive
componentsend/receive

local
component

• Elements Recommended to Support Component Implementation Approach
• Build upon best element of differnt standards to create a rubust, generic framework

Component
Developer

JPL

DC&SE Group
LH(369)-12/04/2000

• Prototyped Publish/Subscribe and Naming Services within NASA Deep Space
 Network’s Monitor & Control Infrastructure Services (MCIS)

• Distributed computing architecture based on Common Object Request Broker
 Architecture (CORBA) open standards for communication infrastructure support

• COTS implementation of CORBA services provided via Adaptive Communication
 Environment - The ACE ORB (ACE-TAO)

- TAO’s Naming Service
- TAO’s R/T Event Service [or Notification Service]

• Build COTS-based OO-component M&C Pub/Sub services by wrapping CORBA
 ACE-TAO services to allow structured code that adheres to layered architecture
 and allow flexible configuration/change, future additions, cleaner API’s and
 development environment, ...

• Exercise typical Publish/Subscribe operational scenarios between distributed
 DSN Subsystems to demo meeting actual requirements

• Document summary of lessons learned through prototyping experience

Prototyped Application & ResultsPrototyped Application & Results

JPL

DC&SE Group
LH(369)-12/04/2000

Object Request Broker (ORB)

Object Services

naming event ….

publisher supplier …. ….User I/F

Application Objects Common Facilities

CORBA Overview
OMG Reference Model Architecture

[Backup]

CORBA Overview
OMG Reference Model Architecture

[Backup]

JPL

DC&SE Group
LH(369)-12/04/2000

DSN MCIS Pub/Sub Architecture SummaryDSN MCIS Pub/Sub Architecture Summary

Publisher
(Producer)

MCIS
Server

Name Service

Subscriber
(Consumer)

CALL BACKS

Subscriber
(Consumer)

Publisher
(Producer)

Subscriber
(Consumer)

CALL BACKS

(Multiple Pub/Sub Instances Scenario)

MCIS - Monitor & Control Infrastructure Services

JPL

DC&SE Group
LH(369)-12/04/2000

M&C Pub/Sub Common Services
using CORBA ACE-TAO

M&C Pub/Sub Common Services
using CORBA ACE-TAO

Pub/Sub Interfaces
Summary

R/T
Event Service

Application 1 Application 2

Consumer

IDL
IDL

Supplier

 Publish
(MDS data item) Subscribe

Naming Service
SubFuncAddrPubFuncAddr

MDS_file

CMonData* =
 MDParser(MDS_file)

CORBA Environment
Pure C++ &TCP/IP

Parser

Callback

Code wrapped
to hide CORBA
and provide
cleaner MCIS API
(Design Pattern)

JPL

DC&SE Group
LH(369)-12/04/2000-

Event
Channel

Naming
Service

ec

ORB
Naming
Client

poa

Servant/
Consumer

Consumer

ec

ORBNaming
Client

poa

Servant/
Supplier

Supplier

Consumer_Imp Supplier_Imp

Supp
Proxy

Consumer
Proxy

Qos Qos

Parser

(MDSdata)

Note:

Customized components

TAO-provided components

CORBA vs. Custom Components
used for MCIS Implementation

CORBA vs. Custom Components
used for MCIS Implementation

• In-house developed code < 1% of COTS (unstripped)
[­ 5% code compared to in-house socket dev.]

JPL

DC&SE Group
LH(369)-12/04/2000-

CCPCCP

NMCNMC

GMPGMP

LAN

CORBA MCIS

CORBA MCIS

CORBA MCIS

TAO R/T
Event Server

TAO R/T
Event Server

TAO
Name Server

TAO
Name Server

NMC - Network Monitor and Controller Subsystem
GMP - GCF Monitor Processor Subsystem
CCP - Command Control Processor Subsystem

- applications that run on the same or different hosts
- TAO services that run on the same or different hosts

CORBA MCIS Demonstration
Test Configuration

[Backup]

CORBA MCIS Demonstration
Test Configuration

[Backup]

JPL

DC&SE Group
LH(369)-12/04/2000-

Lessons Learned From CORBALessons Learned From CORBA

 PROS of CORBA

• CORBA is a platform independent
distributed computing solution. It is a
standard - http://www.omg.org

• CORBA IDL (Interface Definition Language)
defines a language independent
specification, as well as language mappings
for most of the major languages.

• CORBA provides many tools to solve very
many disparate system engineering
problems.

• There are many ORB implementations -
Compared to DCE, where there has only
been one (Transarc) vendor.

• CORBA allows you 100% leverage of your
legacy systems, so old code can be
encapsulated under IDL interfaces.

 CONS of CORBA

• There is a very steep learning curve with
CORBA. It requires strong understanding
C++ and IDL.

• Requires understanding distributed
computing paradigms; e.g. pub/sub
remote procedure calls, etc.

• CORBA assumes you are familiar with
OOP principles such as polymorphism,
abstraction, etc.

• Not all ORBs are created equal! - Many
ORBs do not support the latest CORBA
versions (versions 2.3 - 3.0).

• Commercial ORBs tend to be expensive
> $10,000..

JPL

DC&SE Group
LH(369)-12/04/2000-

PROS of CORBA (cont.)

• CORBA allows integration of other
Component Models such as EJB and
COM.

• CORBA provides many standard
services out of the box. Traditionally at
JPL, tools and services have been
developed to support distributed
computing applications.

• CORBA rapidly accelerates the
development time for complex
applications. E.g. this demo took less
than 2 months2 months to code.

• CORBA provides an InteroperableInteroperable
Naming Service (INS) Naming Service (INS) which automates the
object name mapping.

• CORBA provides an Event or NotificationEvent or Notification
ServiceService - Note under DCE, JPL created
customized solutions for event handling.

CONS of CORBA (cont.)

• Steep learning curve.

•Configuration of systems may be
challenging (language compiler versions,
OS versions, exception handling, etc).

• Configuration of the ORB is non-trivial
(specifically configuring services), due to
non-standard implementation across
COTS.

• Requires an understanding of dynamic
memory issues and dynamic types (_var
types, type any).

• Full implementation of services is not
guaranteed in all COTS.

Lessons Learned from CORBALessons Learned from CORBA

JPL

DC&SE Group
LH(369)-12/04/2000-

Lessons Learned from ACE-TAOLessons Learned from ACE-TAO

 Pros of ACE-TAO

• The ACE-TAO ORB is open source so
debugging is simplified by the scrutiny of
many users.

• ACE-TAO provides very good debug-level
messages, so developers can easily identify
problems.

• ACE-TAO implements many of the CORBA
Services and even extends them (real times
services, etc).

• There is a large user base in the scientific
and business community, and lots of user
feedback, and a very active mailing list.

 Cons of ACE-TAO

• System requirements are large and involve
sys-admin assistance (compilers, OS upgrades,
etc).

• Large disk footprint > 2 Gigs !! It forced team
to obtain a new disk drive.

• ACE-TAO make-file rules to buildACE-TAO
components can be complicated.

• Though ACE-TAO supports many CORBA
services, it may not fully implement them, or
may provide a non-standard service.

JPL

DC&SE Group
LH(369)-12/04/2000-

 Pros of ACE-TAO (cont.)

• Lots of direct support from the DOC team at
UCI and Washington University.

• In developing our applications, the
performance was comparable to applications
developed using DCE (in our small testbed).
I.e., no noticeable performance degradation.

• The Name Service is easily configurable and
provides a novel way for clients and servers to
“discover” each other.

• The Event Service is also very easy to
configure.

 Cons of ACE-TAO (cont.)

• Limited documentation - The documentation
assumes knowledge of CORBA.

• The Event Service is light-weight. Recently
received full Notification implementation is a
plus.

• Both the Event and Name Service may leave
behind ghosts when killed (i.e., dead processes
showing up as active), which can interfere with a
new Service.

Lessons Learned from ACT-TAOLessons Learned from ACT-TAO

JPL

DC&SE Group
LH(369)-12/04/2000-

Summary of ConclusionsSummary of Conclusions

• Challenges of developing efficient, robust, extensible concurrent applications can
be difficult. Distributed computing addresses not easily solved complex topics that
are less problematic for non-concurrent, stand alone applications.

• Should avoid creating in-house infrastructure support services for distributed
computing due to its large scope and complexity. Should instead concentrate on
application-speicific developments.

• Best approach to distributed computing system development is by adopting open
standards for inter-operability and to avoid continuous reinvention.
 - Open standards like CORBA address all areas of complexity that arise in
interconnected systems.

• Recommend taking advantage of OO-component structuring techniques coupled
with a modular architecture and COTS to achieve reuse (requires good systems
engineering assessment and design).

OBJECTIVE: Provide advancedtechnical solutions via s/w prototypes and supporting
framework, tasks concentrate on their application-specific domain solution(s)

OBJECTIVE: Provide advancedtechnical solutions via s/w prototypes and supporting
framework, tasks concentrate on their application-specific domain solution(s)

